Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-06 DOI:10.3390/biomimetics10010031
Mingen Wang, Panliang Yuan, Pengfei Hu, Zhengrong Yang, Shuai Ke, Longliang Huang, Pai Zhang
{"title":"Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning.","authors":"Mingen Wang, Panliang Yuan, Pengfei Hu, Zhengrong Yang, Shuai Ke, Longliang Huang, Pai Zhang","doi":"10.3390/biomimetics10010031","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments. First, we enhance the quality of the initial population in the algorithm by using a stochastic reverse learning strategy based on Bernoulli mapping. Then, the quality of the initial population is further improved through a dynamic position update optimization strategy based on stochastic mean fusion, which enhances the exploration capabilities of the algorithm and helps it explore promising solution spaces more effectively. Additionally, we proposed an optimization method for frontier position updates based on a trust domain, which better balances exploration and exploitation. To evaluate the effectiveness of the proposed algorithm, we compare it with 11 other algorithms using the IEEE CEC2017 test set and perform statistical analysis to assess differences. The experimental results demonstrate that the IRTH algorithm yields competitive performance. Finally, to validate its applicability in real-world scenarios, we apply the IRTH algorithm to the UAV path-planning problem in practical environments, achieving improved results and successfully performing path planning for UAVs.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments. First, we enhance the quality of the initial population in the algorithm by using a stochastic reverse learning strategy based on Bernoulli mapping. Then, the quality of the initial population is further improved through a dynamic position update optimization strategy based on stochastic mean fusion, which enhances the exploration capabilities of the algorithm and helps it explore promising solution spaces more effectively. Additionally, we proposed an optimization method for frontier position updates based on a trust domain, which better balances exploration and exploitation. To evaluate the effectiveness of the proposed algorithm, we compare it with 11 other algorithms using the IEEE CEC2017 test set and perform statistical analysis to assess differences. The experimental results demonstrate that the IRTH algorithm yields competitive performance. Finally, to validate its applicability in real-world scenarios, we apply the IRTH algorithm to the UAV path-planning problem in practical environments, achieving improved results and successfully performing path planning for UAVs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1