Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-12-31 DOI:10.3390/biomimetics10010015
Qiujian Xu, Meihui Li, Guoqiang Chen, Xiubo Ren, Dan Yang, Junrui Li, Xinran Yuan, Siqi Liu, Miaomiao Yang, Mufan Chen, Bo Wang, Peng Zhang, Huiguo Ma
{"title":"Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model.","authors":"Qiujian Xu, Meihui Li, Guoqiang Chen, Xiubo Ren, Dan Yang, Junrui Li, Xinran Yuan, Siqi Liu, Miaomiao Yang, Mufan Chen, Bo Wang, Peng Zhang, Huiguo Ma","doi":"10.3390/biomimetics10010015","DOIUrl":null,"url":null,"abstract":"<p><p>This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model. This method integrates the functional domain, structural domain, and user needs domain, and explores the principles and methods for creating functional construction modules, overcoming the limitations of traditional top-down approaches in design flexibility. By closely combining layout constraints with the design model, this method significantly improves the accuracy and efficiency of module configuration, offering a new path for the development of piano practice assistance devices. The results demonstrate that this device innovatively combines piano practice with rehabilitation training and through the introduction of ontological modeling methods, resolves the challenges of multidimensional needs mapping. Based on five user requirements (P), we calculated the corresponding demand weight (K), making the design more aligned with user needs. The device excels in enhancing motion accuracy, interactivity, and comfort, filling the gap in traditional piano assistance devices in terms of multi-functionality and high adaptability, and offering new ideas for the design and promotion of intelligent assistive devices. Simulation analysis, combined with the motion trajectory of the finger's proximal joint, calculates that 60° is the maximum bending angle for the aforementioned joint. Physical validation confirms the device's superior performance in terms of reliability and high-precision motion reproduction, meeting the requirements for piano-assisted training. Through multi-domain mapping, the top-down process model, and modular design, this research effectively breaks through the design flexibility and functional adaptability bottleneck of traditional piano assistance devices while integrating neurological rehabilitation with music education, opening up a new application path for intelligent assistive devices in the fields of rehabilitation medicine and arts education, and providing a solution for cross-disciplinary technology fusion and innovative development.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model. This method integrates the functional domain, structural domain, and user needs domain, and explores the principles and methods for creating functional construction modules, overcoming the limitations of traditional top-down approaches in design flexibility. By closely combining layout constraints with the design model, this method significantly improves the accuracy and efficiency of module configuration, offering a new path for the development of piano practice assistance devices. The results demonstrate that this device innovatively combines piano practice with rehabilitation training and through the introduction of ontological modeling methods, resolves the challenges of multidimensional needs mapping. Based on five user requirements (P), we calculated the corresponding demand weight (K), making the design more aligned with user needs. The device excels in enhancing motion accuracy, interactivity, and comfort, filling the gap in traditional piano assistance devices in terms of multi-functionality and high adaptability, and offering new ideas for the design and promotion of intelligent assistive devices. Simulation analysis, combined with the motion trajectory of the finger's proximal joint, calculates that 60° is the maximum bending angle for the aforementioned joint. Physical validation confirms the device's superior performance in terms of reliability and high-precision motion reproduction, meeting the requirements for piano-assisted training. Through multi-domain mapping, the top-down process model, and modular design, this research effectively breaks through the design flexibility and functional adaptability bottleneck of traditional piano assistance devices while integrating neurological rehabilitation with music education, opening up a new application path for intelligent assistive devices in the fields of rehabilitation medicine and arts education, and providing a solution for cross-disciplinary technology fusion and innovative development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1