Prediction of facial nerve outcomes after surgery for vestibular schwannoma using machine learning-based models: a systematic review and meta-analysis.

IF 2.5 3区 医学 Q2 CLINICAL NEUROLOGY Neurosurgical Review Pub Date : 2025-01-24 DOI:10.1007/s10143-025-03230-9
Bardia Hajikarimloo, Ibrahim Mohammadzadeh, Mohammad Ali Nazari, Mohammad Amin Habibi, Pourya Taghipour, Seyyed-Ali Alaei, Amirreza Khalaji, Rana Hashemi, Salem M Tos
{"title":"Prediction of facial nerve outcomes after surgery for vestibular schwannoma using machine learning-based models: a systematic review and meta-analysis.","authors":"Bardia Hajikarimloo, Ibrahim Mohammadzadeh, Mohammad Ali Nazari, Mohammad Amin Habibi, Pourya Taghipour, Seyyed-Ali Alaei, Amirreza Khalaji, Rana Hashemi, Salem M Tos","doi":"10.1007/s10143-025-03230-9","DOIUrl":null,"url":null,"abstract":"<p><p>Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of ML-based models in predicting FN outcomes following resection in the setting of VS. On December 12, 2024, the four electronic databases, Pubmed, Embase, Scopus, and Web of Science, were systematically searched. Studies that evaluated the performance outcomes of the ML-based predictive models were included. The pooled sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratio (DOR) were calculated through the R program. Five studies with 807 individuals with VS, encompassing 35 models, were included. The meta-analysis showed a pooled sensitivity of 82% (95%CI: 76-87%), specificity of 79% (95%CI: 74-84%), and DOR of 12.94 (95%CI: 8.65-19.34) with an AUC of 0.841. The meta-analysis of the best performance model demonstrated a pooled sensitivity of 91% (95%CI: 80-96%), specificity of 87% (95%CI: 82-91%), and DOR of 46.84 (95%CI: 19.8-110.8). Additionally, the analysis demonstrated an AUC of 0.92, a sensitivity of 0.884, and a false positive rate of 0.136 for the best performance models. ML-based models possess promising diagnostic accuracy in predicting FN outcomes following resection.</p>","PeriodicalId":19184,"journal":{"name":"Neurosurgical Review","volume":"48 1","pages":"79"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosurgical Review","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10143-025-03230-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of ML-based models in predicting FN outcomes following resection in the setting of VS. On December 12, 2024, the four electronic databases, Pubmed, Embase, Scopus, and Web of Science, were systematically searched. Studies that evaluated the performance outcomes of the ML-based predictive models were included. The pooled sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratio (DOR) were calculated through the R program. Five studies with 807 individuals with VS, encompassing 35 models, were included. The meta-analysis showed a pooled sensitivity of 82% (95%CI: 76-87%), specificity of 79% (95%CI: 74-84%), and DOR of 12.94 (95%CI: 8.65-19.34) with an AUC of 0.841. The meta-analysis of the best performance model demonstrated a pooled sensitivity of 91% (95%CI: 80-96%), specificity of 87% (95%CI: 82-91%), and DOR of 46.84 (95%CI: 19.8-110.8). Additionally, the analysis demonstrated an AUC of 0.92, a sensitivity of 0.884, and a false positive rate of 0.136 for the best performance models. ML-based models possess promising diagnostic accuracy in predicting FN outcomes following resection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurosurgical Review
Neurosurgical Review 医学-临床神经学
CiteScore
5.60
自引率
7.10%
发文量
191
审稿时长
6-12 weeks
期刊介绍: The goal of Neurosurgical Review is to provide a forum for comprehensive reviews on current issues in neurosurgery. Each issue contains up to three reviews, reflecting all important aspects of one topic (a disease or a surgical approach). Comments by a panel of experts within the same issue complete the topic. By providing comprehensive coverage of one topic per issue, Neurosurgical Review combines the topicality of professional journals with the indepth treatment of a monograph. Original papers of high quality are also welcome.
期刊最新文献
Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis. Prediction of facial nerve outcomes after surgery for vestibular schwannoma using machine learning-based models: a systematic review and meta-analysis. Recurrence rate of intracranial aneurysms: a systematic review and a meta-analysis comparing craniotomy and endovascular coiling. Research progress of early brain Injury in subarachnoid hemorrhage from 2004 to 2024: a bibliometric analysis. Risk factors of posthemorrhagic seizure in spontaneous intracerebral hemorrhage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1