Geoffrey W Meissner, Allison Vannan, Jennifer Jeter, Kari Close, Gina M DePasquale, Zachary Dorman, Kaitlyn Forster, Jaye Anne Beringer, Theresa Gibney, Joanna H Hausenfluck, Yisheng He, Kristin Henderson, Lauren Johnson, Rebecca M Johnston, Gudrun Ihrke, Nirmala A Iyer, Rachel Lazarus, Kelley Lee, Hsing-Hsi Li, Hua-Peng Liaw, Brian Melton, Scott Miller, Reeham Motaher, Alexandra Novak, Omotara Ogundeyi, Alyson Petruncio, Jacquelyn Price, Sophia Protopapas, Susana Tae, Jennifer Taylor, Rebecca Vorimo, Brianna Yarbrough, Kevin Xiankun Zeng, Christopher T Zugates, Heather Dionne, Claire Angstadt, Kelly Ashley, Amanda Cavallaro, Tam Dang, Guillermo A Gonzalez, Karen L Hibbard, Cuizhen Huang, Jui-Chun Kao, Todd Laverty, Monti Mercer, Brenda Perez, Scarlett Rose Pitts, Danielle Ruiz, Viruthika Vallanadu, Grace Zhiyu Zheng, Cristian Goina, Hideo Otsuna, Konrad Rokicki, Robert R Svirskas, Han S J Cheong, Michael-John Dolan, Erica Ehrhardt, Kai Feng, Basel E I Galfi, Jens Goldammer, Stephen J Huston, Nan Hu, Masayoshi Ito, Claire McKellar, Ryo Minegishi, Shigehiro Namiki, Aljoscha Nern, Catherine E Schretter, Gabriella R Sterne, Lalanti Venkatasubramanian, Kaiyu Wang, Tanya Wolff, Ming Wu, Reed George, Oz Malkesman, Yoshinori Aso, Gwyneth M Card, Barry J Dickson, Wyatt Korff, Kei Ito, James W Truman, Marta Zlatic, Gerald M Rubin
{"title":"A split-GAL4 driver line resource for <i>Drosophila</i> neuron types.","authors":"Geoffrey W Meissner, Allison Vannan, Jennifer Jeter, Kari Close, Gina M DePasquale, Zachary Dorman, Kaitlyn Forster, Jaye Anne Beringer, Theresa Gibney, Joanna H Hausenfluck, Yisheng He, Kristin Henderson, Lauren Johnson, Rebecca M Johnston, Gudrun Ihrke, Nirmala A Iyer, Rachel Lazarus, Kelley Lee, Hsing-Hsi Li, Hua-Peng Liaw, Brian Melton, Scott Miller, Reeham Motaher, Alexandra Novak, Omotara Ogundeyi, Alyson Petruncio, Jacquelyn Price, Sophia Protopapas, Susana Tae, Jennifer Taylor, Rebecca Vorimo, Brianna Yarbrough, Kevin Xiankun Zeng, Christopher T Zugates, Heather Dionne, Claire Angstadt, Kelly Ashley, Amanda Cavallaro, Tam Dang, Guillermo A Gonzalez, Karen L Hibbard, Cuizhen Huang, Jui-Chun Kao, Todd Laverty, Monti Mercer, Brenda Perez, Scarlett Rose Pitts, Danielle Ruiz, Viruthika Vallanadu, Grace Zhiyu Zheng, Cristian Goina, Hideo Otsuna, Konrad Rokicki, Robert R Svirskas, Han S J Cheong, Michael-John Dolan, Erica Ehrhardt, Kai Feng, Basel E I Galfi, Jens Goldammer, Stephen J Huston, Nan Hu, Masayoshi Ito, Claire McKellar, Ryo Minegishi, Shigehiro Namiki, Aljoscha Nern, Catherine E Schretter, Gabriella R Sterne, Lalanti Venkatasubramanian, Kaiyu Wang, Tanya Wolff, Ming Wu, Reed George, Oz Malkesman, Yoshinori Aso, Gwyneth M Card, Barry J Dickson, Wyatt Korff, Kei Ito, James W Truman, Marta Zlatic, Gerald M Rubin","doi":"10.7554/eLife.98405","DOIUrl":null,"url":null,"abstract":"<p><p>Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in <i>Drosophila melanogaster</i> and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult <i>Drosophila</i> CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.98405","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.