The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-01-14 DOI:10.3390/metabo15010050
Blake Collie, Jacopo Troisi, Martina Lombardi, Steven Symes, Sean Richards
{"title":"The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review.","authors":"Blake Collie, Jacopo Troisi, Martina Lombardi, Steven Symes, Sean Richards","doi":"10.3390/metabo15010050","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis is a common gynecological disease that affects approximately 10-15% of reproductive-aged women worldwide. This debilitating disease has a negative impact on the quality of life of those affected. Despite this condition being very common, the pathogenesis is not well understood. Metabolomics is the study of the array of low-weight metabolites in a given sample. This emerging field of omics-based science has proved to be effective at furthering the understanding of endometriosis. In this systematic review, we seek to provide an overview of the application of metabolomics in endometriosis. We highlight the use of metabolomics in locating biomarkers for identification, understanding treatment mechanisms and symptoms, and relating external factors to endometriosis. The literature search took place in the Web of Science, Pubmed, and Google Scholar based on the keywords \"metabolomics\" AND \"endometriosis\" or \"metabolome\" AND \"endometriosis\". We found 58 articles from 2012 to 2024 that met our search criteria. Significant alterations of lipids, amino acids, as well as other compounds were present in human and animal models. Discrepancies among studies of significantly altered metabolites make it difficult to make general conclusions on the metabolic signature of endometriosis. However, several individual metabolites were elevated in multiple studies of women with endometriosis; these include 3-hydroxybutyrate, lactate, phosphatidic acids, succinate, pyruvate, tetradecenoylcarnitine, hypoxanthine, and xanthine. Accordingly, L-isoleucine and citrate were reduced in multiple studies of women with endometriosis. Including larger cohorts, standardizing testing methods, and studying the individual phenotypes of endometriosis may lead to more separable results.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometriosis is a common gynecological disease that affects approximately 10-15% of reproductive-aged women worldwide. This debilitating disease has a negative impact on the quality of life of those affected. Despite this condition being very common, the pathogenesis is not well understood. Metabolomics is the study of the array of low-weight metabolites in a given sample. This emerging field of omics-based science has proved to be effective at furthering the understanding of endometriosis. In this systematic review, we seek to provide an overview of the application of metabolomics in endometriosis. We highlight the use of metabolomics in locating biomarkers for identification, understanding treatment mechanisms and symptoms, and relating external factors to endometriosis. The literature search took place in the Web of Science, Pubmed, and Google Scholar based on the keywords "metabolomics" AND "endometriosis" or "metabolome" AND "endometriosis". We found 58 articles from 2012 to 2024 that met our search criteria. Significant alterations of lipids, amino acids, as well as other compounds were present in human and animal models. Discrepancies among studies of significantly altered metabolites make it difficult to make general conclusions on the metabolic signature of endometriosis. However, several individual metabolites were elevated in multiple studies of women with endometriosis; these include 3-hydroxybutyrate, lactate, phosphatidic acids, succinate, pyruvate, tetradecenoylcarnitine, hypoxanthine, and xanthine. Accordingly, L-isoleucine and citrate were reduced in multiple studies of women with endometriosis. Including larger cohorts, standardizing testing methods, and studying the individual phenotypes of endometriosis may lead to more separable results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study. Metabolics-Based Study on the Therapeutic Mechanism Behind the Effect of Shenhuang Plaster Applied to the Shenque Acupoint on Gastrointestinal Motility in POI Mice. Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1