Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-01-17 DOI:10.3390/metabo15010063
Zhenya Zhou, Pian Zhang, Peng Tan, Ruiyi Chen, Weihua Hu, Ligai Wang, Yuming Zhang, Dongdong Xu
{"title":"<i>Artemia</i> Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (<i>Nibea albiflora</i>) Larvae.","authors":"Zhenya Zhou, Pian Zhang, Peng Tan, Ruiyi Chen, Weihua Hu, Ligai Wang, Yuming Zhang, Dongdong Xu","doi":"10.3390/metabo15010063","DOIUrl":null,"url":null,"abstract":"<p><p>The inherent deficiency of phospholipids in <i>Artemia</i> limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating <i>Artemia</i> nauplii with 10 g of soybean lecithin per m<sup>3</sup> of seawater for 12 h, significantly enhancing their phospholipid content. <b>Purpose</b>: The present study evaluated the impact of this enrichment on yellow drum (<i>Nibea albiflora</i>) larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance. <b>Methods</b>: The larvae (12 days post-hatching, dph) were fed either soybean lecithin-enriched (SL group) or newly hatched (NH group) <i>Artemia</i> nauplii for 10 days. <b>Results</b>: By the end of the experiment, the SL group exhibited a markedly greater body weight and standard length compared to the NH group (<i>p</i> < 0.05). This growth improvement was due to enhanced intestinal morphology, characterized by a significantly higher mucosal fold height, microvillus density, and microvillus length (<i>p</i> < 0.05). Intestinal RNA sequencing identified 160 upregulated and 447 downregulated differentially expressed genes (DEGs) in the SL group compared to the NH group. Soybean lecithin enrichment reduced the expression of lipogenesis-related genes (<i>fasn</i>, <i>scd</i>, <i>elovl1</i>) while upregulating lipid catabolism genes (<i>ppara</i>, <i>cpt1</i>, <i>cpt2</i>), indicating increased lipid breakdown and energy production. After a 5-day weaning period onto a commercial microdiet, the SL group continued to show significantly superior growth performance. In an afterward desiccation stress test, larvae from the SL group demonstrated significantly higher survival rates, potentially due to the decreased expression of intestinal cytokine genes (<i>ccl13</i>, <i>mhc1</i>, <i>mhc2</i>) observed in the RNA-seq analysis. <b>Conclusions</b>: This study highlights that feeding soybean lecithin-enriched <i>Artemia</i> nauplii enhances growth performance and desiccation stress in yellow drum larvae by promoting lipid catabolism, improving intestinal structure, and regulating immune responses.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent deficiency of phospholipids in Artemia limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating Artemia nauplii with 10 g of soybean lecithin per m3 of seawater for 12 h, significantly enhancing their phospholipid content. Purpose: The present study evaluated the impact of this enrichment on yellow drum (Nibea albiflora) larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance. Methods: The larvae (12 days post-hatching, dph) were fed either soybean lecithin-enriched (SL group) or newly hatched (NH group) Artemia nauplii for 10 days. Results: By the end of the experiment, the SL group exhibited a markedly greater body weight and standard length compared to the NH group (p < 0.05). This growth improvement was due to enhanced intestinal morphology, characterized by a significantly higher mucosal fold height, microvillus density, and microvillus length (p < 0.05). Intestinal RNA sequencing identified 160 upregulated and 447 downregulated differentially expressed genes (DEGs) in the SL group compared to the NH group. Soybean lecithin enrichment reduced the expression of lipogenesis-related genes (fasn, scd, elovl1) while upregulating lipid catabolism genes (ppara, cpt1, cpt2), indicating increased lipid breakdown and energy production. After a 5-day weaning period onto a commercial microdiet, the SL group continued to show significantly superior growth performance. In an afterward desiccation stress test, larvae from the SL group demonstrated significantly higher survival rates, potentially due to the decreased expression of intestinal cytokine genes (ccl13, mhc1, mhc2) observed in the RNA-seq analysis. Conclusions: This study highlights that feeding soybean lecithin-enriched Artemia nauplii enhances growth performance and desiccation stress in yellow drum larvae by promoting lipid catabolism, improving intestinal structure, and regulating immune responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study. Metabolics-Based Study on the Therapeutic Mechanism Behind the Effect of Shenhuang Plaster Applied to the Shenque Acupoint on Gastrointestinal Motility in POI Mice. Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1