Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-01-16 DOI:10.3390/metabo15010055
Sara de Lope Quiñones, Manuel Luque-Ramírez, Antonio Carlos Michael Fernández, Alejandra Quintero Tobar, Jhonatan Quiñones-Silva, María Ángeles Martínez García, María Insenser Nieto, Beatriz Dorado Avendaño, Héctor F Escobar-Morreale, Lía Nattero-Chávez
{"title":"Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy.","authors":"Sara de Lope Quiñones, Manuel Luque-Ramírez, Antonio Carlos Michael Fernández, Alejandra Quintero Tobar, Jhonatan Quiñones-Silva, María Ángeles Martínez García, María Insenser Nieto, Beatriz Dorado Avendaño, Héctor F Escobar-Morreale, Lía Nattero-Chávez","doi":"10.3390/metabo15010055","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomic neuropathy (CAN) on these predictive models. <b>Methods:</b> We conducted a cross-sectional study including 256 patients with T1D. Serum glycoprotein and lipoprotein lipidomics profiles were determined using <sup>1</sup>H-NMR spectroscopy. Subclinical atherosclerosis was defined as carotid intima-media thickness (cIMT) ≥ 1.5 mm. CAN was identified using the Clarke score. Predictive models were built and their performance evaluated using receiver operating characteristic curves and cross-validation. <b>Results:</b> Subclinical atherosclerosis was detected in 32% of participants. Patients with both CAN and atherosclerosis were older, had a longer duration of diabetes, and were more likely to present with bilateral carotid disease. Clinical predictors such as age, duration of diabetes, and smoking status remained the strongest determinants of subclinical atherosclerosis [AUC = 0.88 (95%CI: 0.84-0.93)]. While glycoprotein and lipoprotein lipidomics profiles were associated with atherosclerosis, their inclusion in the clinical model did not significantly improve its diagnostic performance. Stratification by the presence of CAN revealed no impact on the model's ability to predict subclinical atherosclerosis, underscoring its robustness across different risk subgroups. <b>Conclusions:</b> In a cohort of patients with T1D, subclinical atherosclerosis was strongly associated with traditional clinical risk factors. Advanced glycoprotein and lipoprotein lipidomics profiling, although associated with atherosclerosis, did not enhance the diagnostic accuracy of predictive models beyond clinical variables. The predictive model remained effective even in the presence of CAN, highlighting its reliability as a screening tool for identifying patients at risk of subclinical atherosclerosis.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomic neuropathy (CAN) on these predictive models. Methods: We conducted a cross-sectional study including 256 patients with T1D. Serum glycoprotein and lipoprotein lipidomics profiles were determined using 1H-NMR spectroscopy. Subclinical atherosclerosis was defined as carotid intima-media thickness (cIMT) ≥ 1.5 mm. CAN was identified using the Clarke score. Predictive models were built and their performance evaluated using receiver operating characteristic curves and cross-validation. Results: Subclinical atherosclerosis was detected in 32% of participants. Patients with both CAN and atherosclerosis were older, had a longer duration of diabetes, and were more likely to present with bilateral carotid disease. Clinical predictors such as age, duration of diabetes, and smoking status remained the strongest determinants of subclinical atherosclerosis [AUC = 0.88 (95%CI: 0.84-0.93)]. While glycoprotein and lipoprotein lipidomics profiles were associated with atherosclerosis, their inclusion in the clinical model did not significantly improve its diagnostic performance. Stratification by the presence of CAN revealed no impact on the model's ability to predict subclinical atherosclerosis, underscoring its robustness across different risk subgroups. Conclusions: In a cohort of patients with T1D, subclinical atherosclerosis was strongly associated with traditional clinical risk factors. Advanced glycoprotein and lipoprotein lipidomics profiling, although associated with atherosclerosis, did not enhance the diagnostic accuracy of predictive models beyond clinical variables. The predictive model remained effective even in the presence of CAN, highlighting its reliability as a screening tool for identifying patients at risk of subclinical atherosclerosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study. Metabolics-Based Study on the Therapeutic Mechanism Behind the Effect of Shenhuang Plaster Applied to the Shenque Acupoint on Gastrointestinal Motility in POI Mice. Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1