Signal peptidase SpsB coordinates staphylococcal cell cycle, surface protein septal trafficking, and LTA synthesis.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-03-12 Epub Date: 2025-01-24 DOI:10.1128/mbio.02673-24
Ran Zhang, Yaosheng Jia, Salvatore J Scaffidi, Jesper J Madsen, Wenqi Yu
{"title":"Signal peptidase SpsB coordinates staphylococcal cell cycle, surface protein septal trafficking, and LTA synthesis.","authors":"Ran Zhang, Yaosheng Jia, Salvatore J Scaffidi, Jesper J Madsen, Wenqi Yu","doi":"10.1128/mbio.02673-24","DOIUrl":null,"url":null,"abstract":"<p><p>Cell wall-anchored surface proteins of Gram-positive bacteria, harboring a highly conserved YSIRK/G-S signal peptide (SP<sub>YSIRK+</sub>), are deposited at cell division septum and anchored to septal peptidoglycan. The mechanisms supporting YSIRK protein septal trafficking remain elusive. Previously, we identified that LtaS-mediated lipoteichoic acid (LTA) synthesis restricts septal trafficking of YSIRK+ proteins in <i>Staphylococcus aureus</i>. Interestingly, both LtaS and SP<sub>YSIRK+</sub> are cleaved by the signal peptidase SpsB, but the biological implications remain unclear. Here, we show that SpsB is required for cleaving SP<sub>SpA(YSIRK+)</sub> of staphylococcal surface protein A (SpA). Depletion of <i>spsB</i> not only diminished SP<sub>SpA</sub> processing but also abolished SpA septal localization. The mis-localization is attributed to the cleavage activity of SpsB, as an A37P mutation of SP<sub>SpA</sub> that disrupted SpsB cleavage abrogated SpA septal localization. Strikingly, depletion of <i>spsB</i> led to aberrant cell morphology, cell cycle arrest, and daughter cell separation defects. Localization studies showed that SpsB was enriched at the septum of dividing staphylococcal cells. Finally, we show that SpsB spatially regulates LtaS as <i>spsB</i> depletion enriched LtaS at the septum. Collectively, the data suggest a new dual-mechanism model mediated by SpsB: the abundant YSIRK+ proteins are efficiently processed by septal localized SpsB; SpsB cleaves LtaS at the septum, which spatially regulates LtaS activity contributing to YSIRK+ proteins septal trafficking. The study identifies SpsB as a novel and key regulator orchestrating protein secretion, cell cycle, and cell envelope biogenesis.</p><p><strong>Importance: </strong>Surface proteins containing a YSIRK/G-S-positive signal peptide are widely distributed in Gram-positive bacteria and play essential roles in bacterial pathogenesis. They are highly expressed proteins that are enriched at the septum during cell division. The biogenesis of these proteins is coordinated with cell cycle and LTA synthesis. The current study identified the staphylococcal signal peptidase SpsB as a key determinant in regulating surface protein septal trafficking. Furthermore, this study highlights the novel functions of SpsB in coordinating LtaS-mediated LTA production and regulating staphylococcal cell cycle. As SpsB, YSIRK+ proteins, and LTA synthesis are widely distributed and conserved, the mechanisms identified here may be shared across Gram-positive bacteria.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0267324"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02673-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell wall-anchored surface proteins of Gram-positive bacteria, harboring a highly conserved YSIRK/G-S signal peptide (SPYSIRK+), are deposited at cell division septum and anchored to septal peptidoglycan. The mechanisms supporting YSIRK protein septal trafficking remain elusive. Previously, we identified that LtaS-mediated lipoteichoic acid (LTA) synthesis restricts septal trafficking of YSIRK+ proteins in Staphylococcus aureus. Interestingly, both LtaS and SPYSIRK+ are cleaved by the signal peptidase SpsB, but the biological implications remain unclear. Here, we show that SpsB is required for cleaving SPSpA(YSIRK+) of staphylococcal surface protein A (SpA). Depletion of spsB not only diminished SPSpA processing but also abolished SpA septal localization. The mis-localization is attributed to the cleavage activity of SpsB, as an A37P mutation of SPSpA that disrupted SpsB cleavage abrogated SpA septal localization. Strikingly, depletion of spsB led to aberrant cell morphology, cell cycle arrest, and daughter cell separation defects. Localization studies showed that SpsB was enriched at the septum of dividing staphylococcal cells. Finally, we show that SpsB spatially regulates LtaS as spsB depletion enriched LtaS at the septum. Collectively, the data suggest a new dual-mechanism model mediated by SpsB: the abundant YSIRK+ proteins are efficiently processed by septal localized SpsB; SpsB cleaves LtaS at the septum, which spatially regulates LtaS activity contributing to YSIRK+ proteins septal trafficking. The study identifies SpsB as a novel and key regulator orchestrating protein secretion, cell cycle, and cell envelope biogenesis.

Importance: Surface proteins containing a YSIRK/G-S-positive signal peptide are widely distributed in Gram-positive bacteria and play essential roles in bacterial pathogenesis. They are highly expressed proteins that are enriched at the septum during cell division. The biogenesis of these proteins is coordinated with cell cycle and LTA synthesis. The current study identified the staphylococcal signal peptidase SpsB as a key determinant in regulating surface protein septal trafficking. Furthermore, this study highlights the novel functions of SpsB in coordinating LtaS-mediated LTA production and regulating staphylococcal cell cycle. As SpsB, YSIRK+ proteins, and LTA synthesis are widely distributed and conserved, the mechanisms identified here may be shared across Gram-positive bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Signal peptidase SpsB coordinates staphylococcal cell cycle, surface protein septal trafficking and LTA synthesis.
IF 0 bioRxiv : the preprint server for biologyPub Date : 2024-08-21 DOI: 10.1101/2024.08.20.608893
Ran Zhang, Yaosheng Jia, Salvatore J Scaffidi, Jesper J Madsen, Wenqi Yu
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by Hansfordia pulvinata associated with horizontal gene transfer from Aspergillus species. Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle. Insights into the physiological and metabolic features of Thalassobacterium, a novel genus of Verrucomicrobiota with the potential to drive the carbon cycle. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1