Lipid Deposition in Skeletal Muscle Tissues and Its Correlation with Intra-Abdominal Fat: A Pilot Investigation in Type 2 Diabetes Mellitus.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-01-07 DOI:10.3390/metabo15010025
Manoj Kumar Sarma, Andres Saucedo, Suresh Anand Sadananthan, Christine Hema Darwin, Ely Richard Felker, Steve Raman, S Sendhil Velan, Michael Albert Thomas
{"title":"Lipid Deposition in Skeletal Muscle Tissues and Its Correlation with Intra-Abdominal Fat: A Pilot Investigation in Type 2 Diabetes Mellitus.","authors":"Manoj Kumar Sarma, Andres Saucedo, Suresh Anand Sadananthan, Christine Hema Darwin, Ely Richard Felker, Steve Raman, S Sendhil Velan, Michael Albert Thomas","doi":"10.3390/metabo15010025","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. <b>Methods:</b> Participants included 12 T2DM patients (60.3 ± 8.6 years), 9 age-matched healthy controls (AMHC) (60.9 ± 7.8 years), and 10 young healthy controls (YHC) (28.3 ± 1.8 years). We acquired the 2D MR spectra of calf muscles using an enhanced accelerated 5D echo-planar correlated spectroscopic imaging (EP-COSI) technique and abdominal MRI with breath-hold 6-point Dixon sequence. <b>Results:</b> In YHC, choline levels were lower in the gastrocnemius (GAS) and soleus (SOL) muscles but higher in the tibialis anterior (TA) compared to AMHC. YHC also showed a higher unsaturation index (U.I.) of extramyocellular lipids (EMCL) in TA, intramyocellular lipids (IMCL) in GAS, carnosine in SOL, and taurine and creatine in TA. T2DM patients exhibited higher choline in TA and myo-inositol in SOL than AMHC, while triglyceride fat (TGFR2) levels in TA were lower. Correlation analyses indicated associations between IMCL U.I. and various metabolites in muscles with liver, pancreas, and abdominal fat estimates in T2DM. <b>Conclusions:</b> This study highlights distinct muscle metabolite and lipid composition patterns across YHC, AMHC, and T2DM subjects. Associations between IMCL U.I. and abdominal fat depots underscore the interplay between muscle metabolism and adiposity in T2DM. These findings provide new insights into metabolic changes in T2DM and emphasize the utility of advanced MR spectroscopic imaging in characterizing muscle-lipid interactions.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. Methods: Participants included 12 T2DM patients (60.3 ± 8.6 years), 9 age-matched healthy controls (AMHC) (60.9 ± 7.8 years), and 10 young healthy controls (YHC) (28.3 ± 1.8 years). We acquired the 2D MR spectra of calf muscles using an enhanced accelerated 5D echo-planar correlated spectroscopic imaging (EP-COSI) technique and abdominal MRI with breath-hold 6-point Dixon sequence. Results: In YHC, choline levels were lower in the gastrocnemius (GAS) and soleus (SOL) muscles but higher in the tibialis anterior (TA) compared to AMHC. YHC also showed a higher unsaturation index (U.I.) of extramyocellular lipids (EMCL) in TA, intramyocellular lipids (IMCL) in GAS, carnosine in SOL, and taurine and creatine in TA. T2DM patients exhibited higher choline in TA and myo-inositol in SOL than AMHC, while triglyceride fat (TGFR2) levels in TA were lower. Correlation analyses indicated associations between IMCL U.I. and various metabolites in muscles with liver, pancreas, and abdominal fat estimates in T2DM. Conclusions: This study highlights distinct muscle metabolite and lipid composition patterns across YHC, AMHC, and T2DM subjects. Associations between IMCL U.I. and abdominal fat depots underscore the interplay between muscle metabolism and adiposity in T2DM. These findings provide new insights into metabolic changes in T2DM and emphasize the utility of advanced MR spectroscopic imaging in characterizing muscle-lipid interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study. Metabolics-Based Study on the Therapeutic Mechanism Behind the Effect of Shenhuang Plaster Applied to the Shenque Acupoint on Gastrointestinal Motility in POI Mice. Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1