A Randomized, Placebo-Controlled, Single-Center, Crossover Study to Evaluate the Effects of Pre-Meal Whey Protein Microgel on Post-Prandial Glucometabolic and Amino Acid Response in People with Type 2 Diabetes and Overweight or Obesity.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-01-16 DOI:10.3390/metabo15010061
Ian J Neeland, Luiz H de Gregório, Roberto Zagury, Bo Ahrén, Joel Neutel, Christian Darimont, John Corthesy, Yohan Grzywinski, Emilie Perrin, Maximilian von Eynatten, Odd Erik Johansen
{"title":"A Randomized, Placebo-Controlled, Single-Center, Crossover Study to Evaluate the Effects of Pre-Meal Whey Protein Microgel on Post-Prandial Glucometabolic and Amino Acid Response in People with Type 2 Diabetes and Overweight or Obesity.","authors":"Ian J Neeland, Luiz H de Gregório, Roberto Zagury, Bo Ahrén, Joel Neutel, Christian Darimont, John Corthesy, Yohan Grzywinski, Emilie Perrin, Maximilian von Eynatten, Odd Erik Johansen","doi":"10.3390/metabo15010061","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose</b>: Whey protein (WP) consumption prior to a meal curbs appetite and reduces postprandial glucose (PPG) through stimulating endogenous GLP-1 secretion and insulin. <b>Methods</b>: We assessed the metabolic effects of a concentrated WP, using a new micelle-technology (WPM), in people with type 2 diabetes (T2D) and overweight or obesity (NCT04639726). In a randomized-crossover design, participants performed two 240 min lunch meal (622 kcal) tests 7 ± 4 days apart. After an overnight fast and a standardized breakfast, 10 g (125 mL) WPM (40 kcal) or placebo (125 mL water, 0 kcal) was consumed 15 min ahead of the mixed-nutrient meal. Effects on PPG (primary endpoint), insulin, GLP-1, and branched-chain amino acids (BCAAs) were evaluated with frequent blood sampling. Changes in incremental areas under the concentration curve (iAUC) were compared using a mixed model. <b>Results</b>: Twenty-six individuals (14 females, mean ± SD age 62.0 ± 8.3 years, HbA1c 58 ± 12 mmol/mol/7.5 ± 1.1%, BMI 29.2 ± 4.8 kg/m<sup>2</sup>) completed both tests. WPM significantly reduced PPG iAUC<sub>0-2h</sub> by 22% (<i>p</i> = 0.028), and iAUC<sub>0-3h</sub> numerically by -18% (<i>p</i> = 0.090) vs. placebo. WPM also increased insulin iAUC<sub>0-1h</sub> by 61% (<i>p</i> < 0.001), and iAUC<sub>0-3h</sub> by 30% (<i>p</i> = 0.004), respectively. Total GLP-1 iAUC<sub>0-2h</sub> was enhanced by 66% (<i>p</i> < 0.001). Postprandial plasma BCAA patterns were characterized by a rapid increase and larger iAUC<sub>0-2h</sub> (all <i>p</i> < 0.001) after WPM. No adverse events were ascribed to consuming WPM. <b>Conclusions</b>: A 125 mL pre-meal drink containing just 10 g WPM before a mixed meal reduced PPG and increased insulin, GLP-1, and BCAAs. WPM may therefore serve as a metabolic modulator in people with T2D living with overweight or obesity.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Whey protein (WP) consumption prior to a meal curbs appetite and reduces postprandial glucose (PPG) through stimulating endogenous GLP-1 secretion and insulin. Methods: We assessed the metabolic effects of a concentrated WP, using a new micelle-technology (WPM), in people with type 2 diabetes (T2D) and overweight or obesity (NCT04639726). In a randomized-crossover design, participants performed two 240 min lunch meal (622 kcal) tests 7 ± 4 days apart. After an overnight fast and a standardized breakfast, 10 g (125 mL) WPM (40 kcal) or placebo (125 mL water, 0 kcal) was consumed 15 min ahead of the mixed-nutrient meal. Effects on PPG (primary endpoint), insulin, GLP-1, and branched-chain amino acids (BCAAs) were evaluated with frequent blood sampling. Changes in incremental areas under the concentration curve (iAUC) were compared using a mixed model. Results: Twenty-six individuals (14 females, mean ± SD age 62.0 ± 8.3 years, HbA1c 58 ± 12 mmol/mol/7.5 ± 1.1%, BMI 29.2 ± 4.8 kg/m2) completed both tests. WPM significantly reduced PPG iAUC0-2h by 22% (p = 0.028), and iAUC0-3h numerically by -18% (p = 0.090) vs. placebo. WPM also increased insulin iAUC0-1h by 61% (p < 0.001), and iAUC0-3h by 30% (p = 0.004), respectively. Total GLP-1 iAUC0-2h was enhanced by 66% (p < 0.001). Postprandial plasma BCAA patterns were characterized by a rapid increase and larger iAUC0-2h (all p < 0.001) after WPM. No adverse events were ascribed to consuming WPM. Conclusions: A 125 mL pre-meal drink containing just 10 g WPM before a mixed meal reduced PPG and increased insulin, GLP-1, and BCAAs. WPM may therefore serve as a metabolic modulator in people with T2D living with overweight or obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis. Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study. Metabolics-Based Study on the Therapeutic Mechanism Behind the Effect of Shenhuang Plaster Applied to the Shenque Acupoint on Gastrointestinal Motility in POI Mice. Artemia Nauplii Enriched with Soybean Lecithin Enhances Growth Performance, Intestine Morphology, and Desiccation Stress Resistance in Yellow Drum (Nibea albiflora) Larvae. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1