Neuroprotective Effects, Mechanisms of Action and Therapeutic Potential of the Kv7/KCNQ Channel Opener QO-83 in Ischemic Stroke.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY Translational Stroke Research Pub Date : 2025-01-24 DOI:10.1007/s12975-025-01329-1
Huiran Zhang, Yanfei Tian, Yan Zhang, Yan Wang, Jinlong Qi, Xiangyu Wang, Yi Yuan, Rong Chen, Yupeng Zhao, Chang Liu, Najing Zhou, Lanxin Liu, Han Hao, Xiaona Du, Hailin Zhang
{"title":"Neuroprotective Effects, Mechanisms of Action and Therapeutic Potential of the Kv7/KCNQ Channel Opener QO-83 in Ischemic Stroke.","authors":"Huiran Zhang, Yanfei Tian, Yan Zhang, Yan Wang, Jinlong Qi, Xiangyu Wang, Yi Yuan, Rong Chen, Yupeng Zhao, Chang Liu, Najing Zhou, Lanxin Liu, Han Hao, Xiaona Du, Hailin Zhang","doi":"10.1007/s12975-025-01329-1","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential. Transient or distal middle cerebral artery occlusion model was established with C57 mouse to evaluate the role of QO-83. Solitary dose of QO-83 contributes to the microglia inhibition and fibrotic scar mitigation post stroke. QO83 shows prominent effect on reducing infarction area, alleviating cerebral edema, maintaining blood-brain barrier integrity, and enhancing neurogenesis. Single-nucleus RNA sequencing unveils neuroprotection and specific microglial subclusters influenced by QO-83. More importantly, QO83 shows promise in enhancing survival rates with dose dependence. Notably, these protective effects extend beyond the 4-6 h post-reperfusion window. Additionally, continuous dosing of QO-83 correlates with enhanced cognition. In conclusion, this study highlights QO-83 as a protective agent against ischemic brain injury, showcasing its multifaceted effects and potential as a therapeutic strategy.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-025-01329-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential. Transient or distal middle cerebral artery occlusion model was established with C57 mouse to evaluate the role of QO-83. Solitary dose of QO-83 contributes to the microglia inhibition and fibrotic scar mitigation post stroke. QO83 shows prominent effect on reducing infarction area, alleviating cerebral edema, maintaining blood-brain barrier integrity, and enhancing neurogenesis. Single-nucleus RNA sequencing unveils neuroprotection and specific microglial subclusters influenced by QO-83. More importantly, QO83 shows promise in enhancing survival rates with dose dependence. Notably, these protective effects extend beyond the 4-6 h post-reperfusion window. Additionally, continuous dosing of QO-83 correlates with enhanced cognition. In conclusion, this study highlights QO-83 as a protective agent against ischemic brain injury, showcasing its multifaceted effects and potential as a therapeutic strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
期刊最新文献
Jugular Vein Evans Blue Injection for Blood-Brain Barrier Assessment Following Hemorrhagic Stroke in a Mouse Model. Influx of Metabolites into Cerebrospinal Fluid in Intracerebral Hemorrhage is Associated with Increased Central Inflammation: a Retrospective Observational Study. A Freely Moving Photothrombotic Stroke Model Reveals Sustained Dysfunction of GABAergic Neuron in Contralesional Cortex Using Miniaturized Two-Photon Microscopy. Stroke Mechanisms in Intracranial Atherosclerotic Disease: A Modified Classification System and Clinical Implications. Thrombectomy in Stroke Patients with Large Vessel Occlusion and Mild Symptoms: Insights from a Multicenter Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1