Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Bone Research Pub Date : 2025-01-26 DOI:10.1038/s41413-024-00393-x
Mohammad Alhashmi, Abdulrahman M. E. Gremida, Santosh K. Maharana, Marco Antonaci, Amy Kerr, Shijian Fu, Sharna Lunn, David A. Turner, Noor A. Al-Maslamani, Ke Liu, Maria M. Meschis, Hazel Sutherland, Peter Wilson, Peter Clegg, Grant N. Wheeler, Robert J. van ‘t Hof, George Bou-Gharios, Kazuhiro Yamamoto
{"title":"Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation","authors":"Mohammad Alhashmi, Abdulrahman M. E. Gremida, Santosh K. Maharana, Marco Antonaci, Amy Kerr, Shijian Fu, Sharna Lunn, David A. Turner, Noor A. Al-Maslamani, Ke Liu, Maria M. Meschis, Hazel Sutherland, Peter Wilson, Peter Clegg, Grant N. Wheeler, Robert J. van ‘t Hof, George Bou-Gharios, Kazuhiro Yamamoto","doi":"10.1038/s41413-024-00393-x","DOIUrl":null,"url":null,"abstract":"<p>Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards, especially in the perichondrium, the stem cell layer surrounding developing limbs essential for bone formation. <i>Lrp1</i> deficiency in these stem cells causes joint fusion, malformation of cartilage/bone template and markedly delayed or lack of primary ossification. These abnormalities, which resemble phenotypes associated with Wnt signalling pathways, result in severe and persistent skeletal defects including a severe deficit in hip joint and patella, and markedly deformed and low-density long bones leading to dwarfism and impaired mobility. Mechanistically, we show that LRP1 regulates core non-canonical Wnt/planar cell polarity (PCP) components that may explain the malformation of long bones. LRP1 directly binds to Wnt5a, facilitates its cell-association and endocytic degradation and recycling. In the developing limbs, LRP1 partially colocalises with Wnt5a and its deficiency alters abundance and distribution of Wnt5a and Vangl2. Finally, using <i>Xenopus</i> as a model system, we show the regulatory role for LRP1 in Wnt/PCP signalling. We propose that in skeletal progenitors, LRP1 plays a critical role in formation and maturity of multiple bones and joints by regulating Wnt signalling, providing novel insights into the fundamental processes of morphogenesis and the emergence of skeletal pathologies.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"47 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00393-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards, especially in the perichondrium, the stem cell layer surrounding developing limbs essential for bone formation. Lrp1 deficiency in these stem cells causes joint fusion, malformation of cartilage/bone template and markedly delayed or lack of primary ossification. These abnormalities, which resemble phenotypes associated with Wnt signalling pathways, result in severe and persistent skeletal defects including a severe deficit in hip joint and patella, and markedly deformed and low-density long bones leading to dwarfism and impaired mobility. Mechanistically, we show that LRP1 regulates core non-canonical Wnt/planar cell polarity (PCP) components that may explain the malformation of long bones. LRP1 directly binds to Wnt5a, facilitates its cell-association and endocytic degradation and recycling. In the developing limbs, LRP1 partially colocalises with Wnt5a and its deficiency alters abundance and distribution of Wnt5a and Vangl2. Finally, using Xenopus as a model system, we show the regulatory role for LRP1 in Wnt/PCP signalling. We propose that in skeletal progenitors, LRP1 plays a critical role in formation and maturity of multiple bones and joints by regulating Wnt signalling, providing novel insights into the fundamental processes of morphogenesis and the emergence of skeletal pathologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
期刊最新文献
Isovitexin targets SIRT3 to prevent steroid-induced osteonecrosis of the femoral head by modulating mitophagy-mediated ferroptosis Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair Role of macrophage in intervertebral disc degeneration Skeletal abnormalities caused by a Connexin43R239Q mutation in a mouse model for autosomal recessive craniometaphyseal dysplasia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1