Xue Hao, Jing Zhao, Liyuan Jia, Guangyu Ding, Xiaoju Liang, Fei Su, Shuai Yang, Yating Yang, Jing Fan, Weiping J. Zhang, Liu Yang, Qiang Jie
{"title":"LATS1-modulated ZBTB20 perturbing cartilage matrix homeostasis contributes to early-stage osteoarthritis","authors":"Xue Hao, Jing Zhao, Liyuan Jia, Guangyu Ding, Xiaoju Liang, Fei Su, Shuai Yang, Yating Yang, Jing Fan, Weiping J. Zhang, Liu Yang, Qiang Jie","doi":"10.1038/s41413-025-00414-3","DOIUrl":null,"url":null,"abstract":"<p>Osteoarthritis (OA) is one of the most common degenerative joint diseases in the elderly, increasing in prevalence and posing a substantial socioeconomic challenge, while no disease-modifying treatments available. Better understanding of the early molecular events will benefit the early-stage diagnosis and clinical therapy. Here, we observed the nucleus accumulation of ZBTB20, a member of ZBTB-protein family, in the chondrocytes of early-stage OA. Chondrocytes-specific depletion of <i>Zbtb20</i> in adult mice attenuated DMM-induced OA progress, restored the balance of extracellular matrix anabolism and catabolism. The NF-κB signaling mediated disturbance of ECM maintenance by ZBTB20 requires its suppression of <i>Pten</i> and consequent PI3K-Akt signaling activation. Furthermore, the subcellular localization of ZBTB20 was modulated by the kinase LATS1. Independent approaches to modulating ZBTB20 via utilizing TRULI and DAPA can restore ECM homeostasis, improving the abnormal behavior and moderating cartilage degeneration. The compounds TRULI and DAPA modulating ZBTB20 may serve as anti-OA drugs.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"49 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00414-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases in the elderly, increasing in prevalence and posing a substantial socioeconomic challenge, while no disease-modifying treatments available. Better understanding of the early molecular events will benefit the early-stage diagnosis and clinical therapy. Here, we observed the nucleus accumulation of ZBTB20, a member of ZBTB-protein family, in the chondrocytes of early-stage OA. Chondrocytes-specific depletion of Zbtb20 in adult mice attenuated DMM-induced OA progress, restored the balance of extracellular matrix anabolism and catabolism. The NF-κB signaling mediated disturbance of ECM maintenance by ZBTB20 requires its suppression of Pten and consequent PI3K-Akt signaling activation. Furthermore, the subcellular localization of ZBTB20 was modulated by the kinase LATS1. Independent approaches to modulating ZBTB20 via utilizing TRULI and DAPA can restore ECM homeostasis, improving the abnormal behavior and moderating cartilage degeneration. The compounds TRULI and DAPA modulating ZBTB20 may serve as anti-OA drugs.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.