{"title":"MPEMDA: A multi-similarity integration approach with pre-completion and error correction for predicting microbe-drug associations","authors":"Yuxiang Li , Haochen Zhao , Jianxin Wang","doi":"10.1016/j.ymeth.2024.12.013","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and <em>de novo</em> test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at <span><span>https://github.com/lyx8527/MPEMDA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 1-9"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000088","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and de novo test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at https://github.com/lyx8527/MPEMDA.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.