Palmitic acid induces cardiomyocyte apoptosis by enhancing the KLF4/cMLCK signaling pathway.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Gene Pub Date : 2025-01-22 DOI:10.1016/j.gene.2025.149270
Rumeng Zhu, Lei Xiong, Zhangyong Dan, Xiaorui Shi, Chuanlin Shu, Yi Wang, Huaqing Zhu
{"title":"Palmitic acid induces cardiomyocyte apoptosis by enhancing the KLF4/cMLCK signaling pathway.","authors":"Rumeng Zhu, Lei Xiong, Zhangyong Dan, Xiaorui Shi, Chuanlin Shu, Yi Wang, Huaqing Zhu","doi":"10.1016/j.gene.2025.149270","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis. However, the specific mechanisms by which KLF4 regulates cardiac myocyte apoptosis remain unclear. Cardiac myosin light-chain kinase (cMLCK) is a crucial enzyme involved in regulating cardiac myocyte contraction and is closely associated with the regulation of apoptosis. Here, we employed the lipotoxicity in vitro and in vivo models to explore the potential synergistic role of KLF4 and cMLCK in cardiac myocyte apoptosis. Our findings demonstrate that under the influence of PA, upregulation of KLF4 expression accompanied by downregulation of cMLCK expression leads to cardiomyocyte apoptosis and cell proliferation inhibition. Selective knockdown and overexpression of KLF4 in cardiomyocytes further confirmed the involvement of KLF4 in PA-induced cardiomyocyte apoptosis. Likewise, overexpression of cMLCK alleviated PA-induced cardiac myocyte apoptosis. Our study reveals the pro-apoptotic effect of KLF4 and elucidates the specific mechanism by which the KLF4/cMLCK signaling pathway is involved in PA-induced cardiac myocyte apoptosis, providing new therapeutic targets for cardiovascular disease treatment.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149270"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2025.149270","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis. However, the specific mechanisms by which KLF4 regulates cardiac myocyte apoptosis remain unclear. Cardiac myosin light-chain kinase (cMLCK) is a crucial enzyme involved in regulating cardiac myocyte contraction and is closely associated with the regulation of apoptosis. Here, we employed the lipotoxicity in vitro and in vivo models to explore the potential synergistic role of KLF4 and cMLCK in cardiac myocyte apoptosis. Our findings demonstrate that under the influence of PA, upregulation of KLF4 expression accompanied by downregulation of cMLCK expression leads to cardiomyocyte apoptosis and cell proliferation inhibition. Selective knockdown and overexpression of KLF4 in cardiomyocytes further confirmed the involvement of KLF4 in PA-induced cardiomyocyte apoptosis. Likewise, overexpression of cMLCK alleviated PA-induced cardiac myocyte apoptosis. Our study reveals the pro-apoptotic effect of KLF4 and elucidates the specific mechanism by which the KLF4/cMLCK signaling pathway is involved in PA-induced cardiac myocyte apoptosis, providing new therapeutic targets for cardiovascular disease treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
期刊最新文献
Optimal control analysis on the spread of COVID-19: Impact of contact transmission and environmental contamination. A cross-tissue transcriptome-wide association study identifies new key genes in ischemic stroke. c-Myc-targeted therapy in breast cancer: A review of fundamentals and pharmacological Insights. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Relationship between apoptosis gene DNA methylation and fetal growth and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1