Amnah Mahroo, Mareike Alicja Buck, Simon Konstandin, Jörn Huber, Daniel Christopher Hoinkiss, Jochen Hirsch, Matthias Günther
{"title":"New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.","authors":"Amnah Mahroo, Mareike Alicja Buck, Simon Konstandin, Jörn Huber, Daniel Christopher Hoinkiss, Jochen Hirsch, Matthias Günther","doi":"10.1007/s10334-024-01219-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored. This study investigated the water exchange via the BBB in a perturbed physiological condition caused by caffeine ingestion, using the multiple echo time (multi-TE) arterial spin labeling (ASL) technique.</p><p><strong>Material and methods: </strong>Ten healthy, regular coffee drinkers (age = 31 ± 9 years, 3 females) were scanned to acquire five measurements before and six measurements after caffeine ingestion. Data were analyzed with a multi-TE two-compartment model to estimate exchange time (Tex), serving as a proxy for BBB permeability to water. Additionally, cerebral blood flow (CBF), arterial transit time (ATT), and intravoxel transit time (ITT) were investigated.</p><p><strong>Results: </strong>Following caffeine intake, mean gray matter CBF showed a significant time-dependent decrease (P < 0.01). In contrast, Tex, ATT, and ITT did not exhibit significant time-dependent change. However, a non-significant decreasing trend was observed for Tex and ITT, respectively, while ATT showed an increasing trend over time.</p><p><strong>Discussion: </strong>The observed decreasing trend in Tex after caffeine ingestion suggests a potential increase in water flux across the BBB, which may represent a compensatory mechanism to maintain brain homeostasis in response to the caffeine-induced reduction in CBF. Further studies with larger sample sizes are needed to validate and expand upon these findings.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01219-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored. This study investigated the water exchange via the BBB in a perturbed physiological condition caused by caffeine ingestion, using the multiple echo time (multi-TE) arterial spin labeling (ASL) technique.
Material and methods: Ten healthy, regular coffee drinkers (age = 31 ± 9 years, 3 females) were scanned to acquire five measurements before and six measurements after caffeine ingestion. Data were analyzed with a multi-TE two-compartment model to estimate exchange time (Tex), serving as a proxy for BBB permeability to water. Additionally, cerebral blood flow (CBF), arterial transit time (ATT), and intravoxel transit time (ITT) were investigated.
Results: Following caffeine intake, mean gray matter CBF showed a significant time-dependent decrease (P < 0.01). In contrast, Tex, ATT, and ITT did not exhibit significant time-dependent change. However, a non-significant decreasing trend was observed for Tex and ITT, respectively, while ATT showed an increasing trend over time.
Discussion: The observed decreasing trend in Tex after caffeine ingestion suggests a potential increase in water flux across the BBB, which may represent a compensatory mechanism to maintain brain homeostasis in response to the caffeine-induced reduction in CBF. Further studies with larger sample sizes are needed to validate and expand upon these findings.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.