Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Sciences-china Pub Date : 2024-11-18 DOI:10.1016/j.jes.2024.10.023
Min Dong , Kai Zheng , Zhonglan Shen , Chunguang Liu
{"title":"Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem","authors":"Min Dong ,&nbsp;Kai Zheng ,&nbsp;Zhonglan Shen ,&nbsp;Chunguang Liu","doi":"10.1016/j.jes.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis. This result can be explained by the oxidation of bromide ions (Br<sup>-</sup>) by reactive species (ROS and <sup>3</sup>Chl*) of chloroplast into reactive bromine species (RBS). The main mechanism is that the redox of Br<sup>-</sup> reduced the oxidative damage of ACE to the structure and function of chloroplasts, providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species. Compared with the dark group exposed to 5 mg/L Br<sup>-</sup>, the pigment content, H<sub>2</sub>O<sub>2</sub> and <sup>1</sup>O<sub>2</sub> level of the light group increased by 56%, 84% and 69%, respectively. On the other hand, RBS attacks certain electrophilic organic compounds in leaves to generate Br-org. Triple excited state of chlorophyll (<sup>3</sup>Chl*) was the dominant species for the transformation of ACE, while RBS is a key factor in the generation of Br-org in the Br<sup>-</sup>/light/chlorophyll system. A total of six transformation products were identified by HPLC-MS/MS, which were involved in three transformation pathways: methylation, hydroxyl oxidation and hydroxylation followed by bromination. This is the first report that Br<sup>-</sup> could enter the chloroplast and improved chloroplast structure under ACE stress, and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination. This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"153 ","pages":"Pages 275-288"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005175","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis. This result can be explained by the oxidation of bromide ions (Br-) by reactive species (ROS and 3Chl*) of chloroplast into reactive bromine species (RBS). The main mechanism is that the redox of Br- reduced the oxidative damage of ACE to the structure and function of chloroplasts, providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species. Compared with the dark group exposed to 5 mg/L Br-, the pigment content, H2O2 and 1O2 level of the light group increased by 56%, 84% and 69%, respectively. On the other hand, RBS attacks certain electrophilic organic compounds in leaves to generate Br-org. Triple excited state of chlorophyll (3Chl*) was the dominant species for the transformation of ACE, while RBS is a key factor in the generation of Br-org in the Br-/light/chlorophyll system. A total of six transformation products were identified by HPLC-MS/MS, which were involved in three transformation pathways: methylation, hydroxyl oxidation and hydroxylation followed by bromination. This is the first report that Br- could enter the chloroplast and improved chloroplast structure under ACE stress, and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination. This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
期刊最新文献
Improving groundwater vulnerability assessment using machine learning. Environmental studies of priority persistent contaminants: A special issue dedicated to Professor Chuanyong Jing Arsenic speciation in freshwater fish using high performance liquid chromatography and inductively coupled plasma mass spectrometry Arsenic speciation in more than 1600 freshwater fish samples from fifty-three waterbodies in Alberta, Canada Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1