Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2024-12-26 DOI:10.3390/mi16010019
Yun Xue, Chul-Hee Lee
{"title":"Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.","authors":"Yun Xue, Chul-Hee Lee","doi":"10.3390/mi16010019","DOIUrl":null,"url":null,"abstract":"<p><p>The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces. A robot that combines an MRE foot, an electromagnetic control system, and a bionic motion mechanism was designed and manufactured. The MRE foot was made from silicone rubber mixed with carbonyl iron particles at a specific ratio. Systematic experiments were conducted on three typical surfaces, PMMA, wood, and copper plates, to test the friction characteristics and motion performance of the robot. On all tested surfaces, the friction force of the MRE foot was reduced significantly after applying a magnetic field. For example, on the PMMA surface, the friction force of the front leg dropped from 2.09 N to 1.90 N, and that of the hind leg decreased from 3.34 N to 1.75 N. The robot movement speed increased by 1.79, 1.76, and 1.13 times on PMMA, wooden, and copper plate surfaces, respectively. The MRE-based intelligent foot design improved the environmental adaptability and movement efficiency of the inchworm robot significantly, providing new ideas for the application of intelligent materials in the field of bionic robots and solutions to movement challenges in complex environments.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces. A robot that combines an MRE foot, an electromagnetic control system, and a bionic motion mechanism was designed and manufactured. The MRE foot was made from silicone rubber mixed with carbonyl iron particles at a specific ratio. Systematic experiments were conducted on three typical surfaces, PMMA, wood, and copper plates, to test the friction characteristics and motion performance of the robot. On all tested surfaces, the friction force of the MRE foot was reduced significantly after applying a magnetic field. For example, on the PMMA surface, the friction force of the front leg dropped from 2.09 N to 1.90 N, and that of the hind leg decreased from 3.34 N to 1.75 N. The robot movement speed increased by 1.79, 1.76, and 1.13 times on PMMA, wooden, and copper plate surfaces, respectively. The MRE-based intelligent foot design improved the environmental adaptability and movement efficiency of the inchworm robot significantly, providing new ideas for the application of intelligent materials in the field of bionic robots and solutions to movement challenges in complex environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1