Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-20 DOI:10.3390/mi16010112
Youngwoo Kim
{"title":"Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages.","authors":"Youngwoo Kim","doi":"10.3390/mi16010112","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, resonance phenomena of high-speed interconnects and power delivery networks in glass packages are measured and analyzed. The resonances are generated in the interconnection by the physical dimension, cancelation of reactance components, and modes. When the resonances are generated in the operation frequency band, the signal/power integrity of the interconnect can be affected. As such, resonances generated in high-speed interconnects increase insertion loss, which degrades signal integrity. Also, resonances of the power delivery network (PDN) associated with boundary conditions increase PDN impedance, which degrades power integrity by generating power/ground noise and return current discontinuity of through vias. Recently, glass packaging has been gaining more attention due to its advantages associated with low substrate loss and large dimensions compared to silicon wafers. However, the low loss of the substrate and process variation may affect the resonance properties of interconnects. The resonance impacts on signal/power integrity must be analyzed, and mitigation plans should be proposed to maximize the advantages of the glass packaging technology. To analyze the resonance impacts on signal/power integrity, various glass package test vehicles are designed and fabricated. The fabricated test vehicles include transmission lines, PDNs, and patterns to measure an interaction between the through via and PDN. First, transmission line patterns that have 50-ohm characteristic impedance are measured. Due to the process variations, quarter-wave resonances are monitored, and at those frequencies, a sharp increase in insertion loss is observed, which deteriorates the signal integrity of the interconnect. Various PDN patterns are measured in the frequency domain, and regardless of the PDN shape, PDN impedance peaks are observed at the mode resonance frequencies. Due to a low-loss characteristic of the glass substrate, sharp PDN impedance peaks are generated at these frequencies. Also, at these frequencies, both signal and power integrity degradations are measured and analyzed. To fully benefit from the advantages of glass packaging technology, a thorough electrical performance analysis should be conducted to avoid resonances in the target frequency range.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, resonance phenomena of high-speed interconnects and power delivery networks in glass packages are measured and analyzed. The resonances are generated in the interconnection by the physical dimension, cancelation of reactance components, and modes. When the resonances are generated in the operation frequency band, the signal/power integrity of the interconnect can be affected. As such, resonances generated in high-speed interconnects increase insertion loss, which degrades signal integrity. Also, resonances of the power delivery network (PDN) associated with boundary conditions increase PDN impedance, which degrades power integrity by generating power/ground noise and return current discontinuity of through vias. Recently, glass packaging has been gaining more attention due to its advantages associated with low substrate loss and large dimensions compared to silicon wafers. However, the low loss of the substrate and process variation may affect the resonance properties of interconnects. The resonance impacts on signal/power integrity must be analyzed, and mitigation plans should be proposed to maximize the advantages of the glass packaging technology. To analyze the resonance impacts on signal/power integrity, various glass package test vehicles are designed and fabricated. The fabricated test vehicles include transmission lines, PDNs, and patterns to measure an interaction between the through via and PDN. First, transmission line patterns that have 50-ohm characteristic impedance are measured. Due to the process variations, quarter-wave resonances are monitored, and at those frequencies, a sharp increase in insertion loss is observed, which deteriorates the signal integrity of the interconnect. Various PDN patterns are measured in the frequency domain, and regardless of the PDN shape, PDN impedance peaks are observed at the mode resonance frequencies. Due to a low-loss characteristic of the glass substrate, sharp PDN impedance peaks are generated at these frequencies. Also, at these frequencies, both signal and power integrity degradations are measured and analyzed. To fully benefit from the advantages of glass packaging technology, a thorough electrical performance analysis should be conducted to avoid resonances in the target frequency range.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1