Improving MRI turbulence quantification by addressing the measurement errors caused by the derivatives of the turbulent velocity field – Sequence development and in-vitro validation

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic resonance imaging Pub Date : 2025-01-23 DOI:10.1016/j.mri.2025.110333
Swantje Romig , Kristine John , Simon Schmidt , Sebastian Schmitter , Sven Grundmann , Martin Bruschewski
{"title":"Improving MRI turbulence quantification by addressing the measurement errors caused by the derivatives of the turbulent velocity field – Sequence development and in-vitro validation","authors":"Swantje Romig ,&nbsp;Kristine John ,&nbsp;Simon Schmidt ,&nbsp;Sebastian Schmitter ,&nbsp;Sven Grundmann ,&nbsp;Martin Bruschewski","doi":"10.1016/j.mri.2025.110333","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.</div></div><div><h3>Methods</h3><div>We developed a Cartesian phase contrast sequence with FAST velocity encoding and two separately measured partial echoes with opposite readout directions. This design aims to reduce the high-order gradient moments that are responsible for the described measurement error. Velocity encoding directions follow the ICOSA6 scheme to capture the full RST. Turbulence data is reconstructed using the intra-voxel phase dispersion (IVPD) technique. We validated this sequence in vitro using a periodic hill flow benchmark with highly anisotropic turbulence. MRI data underwent extensive averaging, with multiple velocity encoding values employed to reduce noise and isolate systematic effects.</div></div><div><h3>Results</h3><div>The RST data obtained from the new sequence agree well with the ground truth. Compared to a state-of-the-art sequence, the maximum errors were reduced by factor five.</div></div><div><h3>Conclusion</h3><div>Simple adjustments to current MRI protocols can greatly enhance turbulence measurement accuracy through the reduction of high-order gradient moments. The proposed measures include applying FAST velocity encoding, high readout bandwidth, and a highly asymmetric readout. Ringing artifacts due to the asymmetric readout can be removed via a second, inverted readout.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"117 ","pages":"Article 110333"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X25000153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

Methods

We developed a Cartesian phase contrast sequence with FAST velocity encoding and two separately measured partial echoes with opposite readout directions. This design aims to reduce the high-order gradient moments that are responsible for the described measurement error. Velocity encoding directions follow the ICOSA6 scheme to capture the full RST. Turbulence data is reconstructed using the intra-voxel phase dispersion (IVPD) technique. We validated this sequence in vitro using a periodic hill flow benchmark with highly anisotropic turbulence. MRI data underwent extensive averaging, with multiple velocity encoding values employed to reduce noise and isolate systematic effects.

Results

The RST data obtained from the new sequence agree well with the ground truth. Compared to a state-of-the-art sequence, the maximum errors were reduced by factor five.

Conclusion

Simple adjustments to current MRI protocols can greatly enhance turbulence measurement accuracy through the reduction of high-order gradient moments. The proposed measures include applying FAST velocity encoding, high readout bandwidth, and a highly asymmetric readout. Ringing artifacts due to the asymmetric readout can be removed via a second, inverted readout.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
期刊最新文献
Editorial Board Concurrent water T2 and fat fraction mapping of the breast using the radial gradient and spin echo (RADGRASE) pulse sequence Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network Editorial Board Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1