Na Xiao, Yonghui Li, Peiyan Sun, Peihua Zhu, Hongyan Wang, Yin Wu, Mingyu Bai, Ansheng Li, Wuyi Ming
{"title":"A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance.","authors":"Na Xiao, Yonghui Li, Peiyan Sun, Peihua Zhu, Hongyan Wang, Yin Wu, Mingyu Bai, Ansheng Li, Wuyi Ming","doi":"10.3390/mi16010015","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.