SiC MOSFET with Integrated SBD Device Performance Prediction Method Based on Neural Network.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2024-12-31 DOI:10.3390/mi16010055
Xiping Niu, Ling Sang, Xiaoling Duan, Shijie Gu, Peng Zhao, Tao Zhu, Kaixuan Xu, Yawei He, Zheyang Li, Jincheng Zhang, Rui Jin
{"title":"SiC MOSFET with Integrated SBD Device Performance Prediction Method Based on Neural Network.","authors":"Xiping Niu, Ling Sang, Xiaoling Duan, Shijie Gu, Peng Zhao, Tao Zhu, Kaixuan Xu, Yawei He, Zheyang Li, Jincheng Zhang, Rui Jin","doi":"10.3390/mi16010055","DOIUrl":null,"url":null,"abstract":"<p><p>The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD. This study introduces a novel approach utilizing neural network machine learning to predict the static and dynamic characteristics of the SBD-MOSFET. In this research, SBD-MOSFET devices are modeled and simulated using Sentaurus TCAD(2017) software, resulting in the generation of 625 sets of device structure and sample data, which serve as the sample set for the neural network. These input variables are then fed into the neural network for prediction. The findings indicate that the mean square error (MSE) values for the threshold voltage (Vth), breakdown voltage (BV), specific on-resistance (R<sub>on</sub>), and total switching power dissipation (E) are 0.0051, 0.0031, 0.0065, and 0.0220, respectively, demonstrating a high degree of accuracy in the predicted values. Meanwhile, in the comparison of convolutional neural networks and machine learning, the CNN accuracy is much higher than the machine learning methods. This method of predicting device performance via neural networks offers a rapid means of designing SBD-MOSFETs with specified performance targets, thereby presenting significant advantages in accelerating research on SBD-MOSFET performance prediction.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD. This study introduces a novel approach utilizing neural network machine learning to predict the static and dynamic characteristics of the SBD-MOSFET. In this research, SBD-MOSFET devices are modeled and simulated using Sentaurus TCAD(2017) software, resulting in the generation of 625 sets of device structure and sample data, which serve as the sample set for the neural network. These input variables are then fed into the neural network for prediction. The findings indicate that the mean square error (MSE) values for the threshold voltage (Vth), breakdown voltage (BV), specific on-resistance (Ron), and total switching power dissipation (E) are 0.0051, 0.0031, 0.0065, and 0.0220, respectively, demonstrating a high degree of accuracy in the predicted values. Meanwhile, in the comparison of convolutional neural networks and machine learning, the CNN accuracy is much higher than the machine learning methods. This method of predicting device performance via neural networks offers a rapid means of designing SBD-MOSFETs with specified performance targets, thereby presenting significant advantages in accelerating research on SBD-MOSFET performance prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1