Trench MOS Schottky Diodes: A Physics-Based Analytical Model Approach to Charge Sharing.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-14 DOI:10.3390/mi16010090
Mohammed Tanvir Quddus, Alvaro D Latorre-Rey, Zeinab Ramezani, Mihir Mudholkar
{"title":"Trench MOS Schottky Diodes: A Physics-Based Analytical Model Approach to Charge Sharing.","authors":"Mohammed Tanvir Quddus, Alvaro D Latorre-Rey, Zeinab Ramezani, Mihir Mudholkar","doi":"10.3390/mi16010090","DOIUrl":null,"url":null,"abstract":"<p><p>Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations. This paper introduces a new physics-based analytical model to elucidate the behavior of electric field and potential in the mesa region of a TMBS rectifier in reverse bias. Our model leverages the concept of shared charge between the Schottky and MOS junctions, capturing how electric field distribution is altered in response to trench geometry and bias conditions. This shared charge approach not only simplifies the analysis of electric field distribution but also reveals key design parameters, such as trench depth, oxide thickness, and doping concentration, that influence device performance. This model employs the concept of shared charge between the vertical Schottky and MOS junction. Additionally, it provides a detailed view of the electric field suppression mechanism in the TMBS device, highlighting the significant effects of the inversion charge on the MOS interface. By comparing our analytical results with TCAD simulations, we demonstrate strong agreement, underscoring the model's accuracy and its potential to serve as a more accessible alternative to resource-intensive simulations. This work contributes to a valuable tool for TMBS device design, offering insights into electric field management that support high-efficiency, high-voltage applications, including power supplies, automotive electronics, and renewable energy systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010090","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations. This paper introduces a new physics-based analytical model to elucidate the behavior of electric field and potential in the mesa region of a TMBS rectifier in reverse bias. Our model leverages the concept of shared charge between the Schottky and MOS junctions, capturing how electric field distribution is altered in response to trench geometry and bias conditions. This shared charge approach not only simplifies the analysis of electric field distribution but also reveals key design parameters, such as trench depth, oxide thickness, and doping concentration, that influence device performance. This model employs the concept of shared charge between the vertical Schottky and MOS junction. Additionally, it provides a detailed view of the electric field suppression mechanism in the TMBS device, highlighting the significant effects of the inversion charge on the MOS interface. By comparing our analytical results with TCAD simulations, we demonstrate strong agreement, underscoring the model's accuracy and its potential to serve as a more accessible alternative to resource-intensive simulations. This work contributes to a valuable tool for TMBS device design, offering insights into electric field management that support high-efficiency, high-voltage applications, including power supplies, automotive electronics, and renewable energy systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1