A Comparative Analysis of Laser-Ablated Surface Characteristics Between the Si Face and C Face of Silicon Carbide Substrates.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-01 DOI:10.3390/mi16010062
Hsin-Yi Tsai, Yu-Hsuan Lin, Kuo-Cheng Huang, J Andrew Yeh, Yi Yang, Chien-Fang Ding
{"title":"A Comparative Analysis of Laser-Ablated Surface Characteristics Between the Si Face and C Face of Silicon Carbide Substrates.","authors":"Hsin-Yi Tsai, Yu-Hsuan Lin, Kuo-Cheng Huang, J Andrew Yeh, Yi Yang, Chien-Fang Ding","doi":"10.3390/mi16010062","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon carbide (SiC) has significant potential as a third-generation semiconductor material due to its exceptional thermal and electronic properties, yet its high hardness and brittleness make processing costly and complex. This study introduces ultraviolet laser ablation as a method for direct SiC material removal, investigating the effects of varying scanning speeds on surface composition, hardness, and ablation depth. The results indicate optimal processing speeds for the Si and C faces at 200 mm/s and 100 mm/s, respectively. Ablation depth is linearly correlated with laser repetitions, achieving a 25% improvement in removal efficiency at 100 mm/s on the C face compared to higher speeds. A composition analysis shows that the Si and C faces of SiC exhibit consistent ratios of Si, O, and C both before and after ablation. Post-ablation, the proportion of Si and C decreases with an increased presence of oxygen. At scanning speeds below 200 mm/s, the variation in speed has minimal effect on the compositional ratios, indicating a stable elemental distribution across the surface despite differences in processing speed. Hardness testing indicates an initial hardness of 13,896 MPa for the C face, higher than that of the Si face, with both surfaces experiencing a drop to less than 1% of their original hardness (below 50 MPa) after ablation. Lattice structure analysis shows Moissanite-5H SiC and cubic silicon formation on the Si face, while the C face retains partial SiC structure. This study found that when laser parameters are used to process SiC, the processing parameters required on both sides are different and provide important reference information for future industrial processing applications to shorten the time and process cost of SiC surface thinning.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon carbide (SiC) has significant potential as a third-generation semiconductor material due to its exceptional thermal and electronic properties, yet its high hardness and brittleness make processing costly and complex. This study introduces ultraviolet laser ablation as a method for direct SiC material removal, investigating the effects of varying scanning speeds on surface composition, hardness, and ablation depth. The results indicate optimal processing speeds for the Si and C faces at 200 mm/s and 100 mm/s, respectively. Ablation depth is linearly correlated with laser repetitions, achieving a 25% improvement in removal efficiency at 100 mm/s on the C face compared to higher speeds. A composition analysis shows that the Si and C faces of SiC exhibit consistent ratios of Si, O, and C both before and after ablation. Post-ablation, the proportion of Si and C decreases with an increased presence of oxygen. At scanning speeds below 200 mm/s, the variation in speed has minimal effect on the compositional ratios, indicating a stable elemental distribution across the surface despite differences in processing speed. Hardness testing indicates an initial hardness of 13,896 MPa for the C face, higher than that of the Si face, with both surfaces experiencing a drop to less than 1% of their original hardness (below 50 MPa) after ablation. Lattice structure analysis shows Moissanite-5H SiC and cubic silicon formation on the Si face, while the C face retains partial SiC structure. This study found that when laser parameters are used to process SiC, the processing parameters required on both sides are different and provide important reference information for future industrial processing applications to shorten the time and process cost of SiC surface thinning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1