{"title":"An X-Band Class-J GaN MMIC Power Amplifier with Well-Designed In-Band Output Power Flatness.","authors":"Bangjie Zheng, Zhiqun Cheng, Zhiwei Zhang, Ruizhe Zhang, Tingwei Gong, Chao Le","doi":"10.3390/mi16010087","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an X-band high-power GaN MMIC power amplifier (PA). To balance efficiency, output power, and saturated power flatness, the load-line theory is employed to analyze and validate the power variation trends within an extended continuous Class B/J (CCBJ) impedance space. Theoretical constant power contours are plotted within this space. An L-C impedance matching network is used to match the amplifier's output impedance to the overlapping region of the 0.5 dB constant power contour and the CCBJ impedance space, significantly improving the in-band power flatness of the PA based on the CCBJ design approach. Additionally, an RC parallel structure is integrated into the interstage matching network to maximize gain while ensuring stability. The proposed PA, implemented using a 0.25 µm commercial GaN process, achieves a saturated output power of 47-47.6 dBm with in-band fluctuations within ± 0.3 dB, a power gain of 27.0-27.8 dB, and an efficiency of 40-45.5% across the X-band.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an X-band high-power GaN MMIC power amplifier (PA). To balance efficiency, output power, and saturated power flatness, the load-line theory is employed to analyze and validate the power variation trends within an extended continuous Class B/J (CCBJ) impedance space. Theoretical constant power contours are plotted within this space. An L-C impedance matching network is used to match the amplifier's output impedance to the overlapping region of the 0.5 dB constant power contour and the CCBJ impedance space, significantly improving the in-band power flatness of the PA based on the CCBJ design approach. Additionally, an RC parallel structure is integrated into the interstage matching network to maximize gain while ensuring stability. The proposed PA, implemented using a 0.25 µm commercial GaN process, achieves a saturated output power of 47-47.6 dBm with in-band fluctuations within ± 0.3 dB, a power gain of 27.0-27.8 dB, and an efficiency of 40-45.5% across the X-band.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.