Analytical Solutions for Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Circular Cylindrical Microchannels with Slip-Dependent Zeta Potential Considering Thermal Radiative Effects.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-05 DOI:10.3390/mi16010063
Zouqing Tan, Xiangcheng Ren
{"title":"Analytical Solutions for Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Circular Cylindrical Microchannels with Slip-Dependent Zeta Potential Considering Thermal Radiative Effects.","authors":"Zouqing Tan, Xiangcheng Ren","doi":"10.3390/mi16010063","DOIUrl":null,"url":null,"abstract":"<p><p>This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials. Subsequently, the effects of key parameters, including electric double-layer (EDL) thickness, slip length, nanoparticle volume fraction, thermal radiation parameters, and Brinkman number, on the velocity field, temperature field, and Nusselt number are discussed. The results show that the velocity is consistently higher for the SD zeta potential compared to the SI zeta potential. Meanwhile, the temperature for the SD case is higher than that for the SI case at lower Brinkman numbers, particularly for a thinner EDL. However, an inverse trend is observed at higher Brinkman numbers. Similar trends are observed for the Nusselt number under both SD and SI zeta potential conditions at different Brinkman numbers. Furthermore, for a thinner EDL, the differences in flow velocity, temperature, and Nusselt number between the SD and SI conditions are more pronounced.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials. Subsequently, the effects of key parameters, including electric double-layer (EDL) thickness, slip length, nanoparticle volume fraction, thermal radiation parameters, and Brinkman number, on the velocity field, temperature field, and Nusselt number are discussed. The results show that the velocity is consistently higher for the SD zeta potential compared to the SI zeta potential. Meanwhile, the temperature for the SD case is higher than that for the SI case at lower Brinkman numbers, particularly for a thinner EDL. However, an inverse trend is observed at higher Brinkman numbers. Similar trends are observed for the Nusselt number under both SD and SI zeta potential conditions at different Brinkman numbers. Furthermore, for a thinner EDL, the differences in flow velocity, temperature, and Nusselt number between the SD and SI conditions are more pronounced.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1