A Pilot Study Exploring the Relationship Between Milk Composition and Microbial Capacity in Breastfed Infants.

IF 4.8 2区 医学 Q1 NUTRITION & DIETETICS Nutrients Pub Date : 2025-01-18 DOI:10.3390/nu17020338
Ashwana D Fricker, Kristija Sejane, Mina Desai, Michael W Snyder, Luis Duran, Rachel Mackelprang, Lars Bode, Michael G Ross, Gilberto E Flores
{"title":"A Pilot Study Exploring the Relationship Between Milk Composition and Microbial Capacity in Breastfed Infants.","authors":"Ashwana D Fricker, Kristija Sejane, Mina Desai, Michael W Snyder, Luis Duran, Rachel Mackelprang, Lars Bode, Michael G Ross, Gilberto E Flores","doi":"10.3390/nu17020338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome. The goal of this study was to characterize the HMO profiles of normal-weight and overweight mothers and to quantitatively link HMO concentrations to the taxonomic composition and functional potential of the infant gut microbiome.</p><p><strong>Methods: </strong>Normal-weight (BMI = 18.5-24.9; <i>n</i> = 9) and overweight/obese (OW/OB; BMI > 25; <i>n</i> = 11) breastfeeding mothers and their infants were enrolled in this single-center, cross-sectional pilot study. Human milk from the mothers and rectal stool swabs from the infants were collected 7-9 weeks postpartum. The HMO composition, microbiome composition, and microbial functions were assessed using HPLC, 16S rRNA gene sequencing, and metagenomic sequencing, respectively.</p><p><strong>Results: </strong>Neither the HMO profiles nor the infant microbiome composition varied according to maternal BMI status. Taxonomically, the gut microbiota of infants were dominated by typical gut lineages including <i>Bifidobacterium</i>. Significant correlations between individual HMOs and bacterial genera were identified, including for <i>Prevotella</i>, a genus of the Bacteroidota phylum that was positively correlated with the concentrations of lacto-<i>N</i>-neotetraose (LNnT) and lacto-<i>N</i>-hexaose (LNH). Using metagenomic assembled genomes, we were also able to identify the broad HMO-degradative capacity across the <i>Bifidobacterium</i> and <i>Prevotella</i> genera.</p><p><strong>Conclusions: </strong>These results suggest that the maternal BMI status does not impact the HMO profiles of human milk. However, select HMOs were correlated with specific bacterial taxa, suggesting that the milk composition influences both the taxonomic composition and the functional capacity of the infant gut microbiome.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"17 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu17020338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome. The goal of this study was to characterize the HMO profiles of normal-weight and overweight mothers and to quantitatively link HMO concentrations to the taxonomic composition and functional potential of the infant gut microbiome.

Methods: Normal-weight (BMI = 18.5-24.9; n = 9) and overweight/obese (OW/OB; BMI > 25; n = 11) breastfeeding mothers and their infants were enrolled in this single-center, cross-sectional pilot study. Human milk from the mothers and rectal stool swabs from the infants were collected 7-9 weeks postpartum. The HMO composition, microbiome composition, and microbial functions were assessed using HPLC, 16S rRNA gene sequencing, and metagenomic sequencing, respectively.

Results: Neither the HMO profiles nor the infant microbiome composition varied according to maternal BMI status. Taxonomically, the gut microbiota of infants were dominated by typical gut lineages including Bifidobacterium. Significant correlations between individual HMOs and bacterial genera were identified, including for Prevotella, a genus of the Bacteroidota phylum that was positively correlated with the concentrations of lacto-N-neotetraose (LNnT) and lacto-N-hexaose (LNH). Using metagenomic assembled genomes, we were also able to identify the broad HMO-degradative capacity across the Bifidobacterium and Prevotella genera.

Conclusions: These results suggest that the maternal BMI status does not impact the HMO profiles of human milk. However, select HMOs were correlated with specific bacterial taxa, suggesting that the milk composition influences both the taxonomic composition and the functional capacity of the infant gut microbiome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nutrients
Nutrients NUTRITION & DIETETICS-
CiteScore
9.20
自引率
15.30%
发文量
4599
审稿时长
16.74 days
期刊介绍: Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
An Explainable CNN and Vision Transformer-Based Approach for Real-Time Food Recognition. Effects of Dietary Habits on Markers of Oxidative Stress in Subjects with Hashimoto's Thyroiditis: Comparison Between the Mediterranean Diet and a Gluten-Free Diet. Association Between Protein-Rich Foods, Nutritional Supplements, and Age of Natural Menopause and Its Symptoms. Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk. Brussels Chicory Enhances Exhaustive Aerobic Exercise Performance and Post-Exercise Recovery, Possibly Through Promotion of Lactate Oxidation: A Pilot Randomized, Single-Blind, Placebo-Controlled, Two-Way Crossover Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1