Carolina Arriaza-Echanes, Claudio A Terraza, Alain Tundidor-Camba, Loreto Sanhueza Ch, Pablo A Ortiz
{"title":"Novel Co-Polyamides Containing Pendant Phenyl/Pyridinyl Groups with Potential Application in Water Desalination Processes.","authors":"Carolina Arriaza-Echanes, Claudio A Terraza, Alain Tundidor-Camba, Loreto Sanhueza Ch, Pablo A Ortiz","doi":"10.3390/polym17020208","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry. Notably, pyridinyl-substituted membranes achieved water fluxes up to 17.7 L m<sup>-2</sup> h<sup>-1</sup> and a NaCl rejection of 37.3%, while phenyl-substituted variants provided insights into the interplay of hydrophobicity and porosity. These findings highlight the critical role of pendant group functionality in tailoring membrane performance, offering a foundation for further structural modifications to enhance efficiency in water treatment technologies.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020208","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry. Notably, pyridinyl-substituted membranes achieved water fluxes up to 17.7 L m-2 h-1 and a NaCl rejection of 37.3%, while phenyl-substituted variants provided insights into the interplay of hydrophobicity and porosity. These findings highlight the critical role of pendant group functionality in tailoring membrane performance, offering a foundation for further structural modifications to enhance efficiency in water treatment technologies.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.