Development of Thermoplastic Bi-Component Electrodes for Triboelectric Impact Detection in Smart Textile Applications.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-01-16 DOI:10.3390/polym17020210
David Seixas Esteves, Amanda Melo, Bruno Peliteiro, Nelson Durães, Maria C Paiva, Elsa W Sequeiros
{"title":"Development of Thermoplastic Bi-Component Electrodes for Triboelectric Impact Detection in Smart Textile Applications.","authors":"David Seixas Esteves, Amanda Melo, Bruno Peliteiro, Nelson Durães, Maria C Paiva, Elsa W Sequeiros","doi":"10.3390/polym17020210","DOIUrl":null,"url":null,"abstract":"<p><p>Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility. This blend, suitable for bi-component extrusion processes, exemplifies the role of advanced materials in combining electrical conductivity, mechanical flexibility, and processability, which are essential for wearable technology. The composite optimisation balanced MWCNT (2.5, 5, 7.5, and 10 wt.%) and TPE (0, 25, and 50 wt.%) in a PP matrix. There was a significant decrease in electrical resistivity between 2.5 and 5 wt.% MWCNT, with electrical resistivity ranging from (7.64 ± 4.03)10<sup>4</sup> to (1.15 ± 0.10)10<sup>-1</sup> Ω·m. Combining the composite with 25 wt.% TPE improved the flexibility, while with 50 wt.% TPE decreased tensile strength and hindered the masterbatch pelletising process. The final stage involved laminating the composite filament electrodes, with a 5 wt.% MWCNT/PP/(25 wt.% TPE) core and a TPE sheath, into a textile triboelectric impact detection sensor. This sensor, responding to contact and separation, produced an output voltage of approximately 5 V peak-to-peak per filament and 15 V peak-to-peak with five filaments under a 100 N force over 78.54 cm<sup>2</sup>. This preliminary study demonstrates an innovative approach to enhance the flexibility of conductive materials for smart textile applications, enabling the development of triboelectric sensor electrodes with potential applications in impact detection, fall monitoring, and motion tracking.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility. This blend, suitable for bi-component extrusion processes, exemplifies the role of advanced materials in combining electrical conductivity, mechanical flexibility, and processability, which are essential for wearable technology. The composite optimisation balanced MWCNT (2.5, 5, 7.5, and 10 wt.%) and TPE (0, 25, and 50 wt.%) in a PP matrix. There was a significant decrease in electrical resistivity between 2.5 and 5 wt.% MWCNT, with electrical resistivity ranging from (7.64 ± 4.03)104 to (1.15 ± 0.10)10-1 Ω·m. Combining the composite with 25 wt.% TPE improved the flexibility, while with 50 wt.% TPE decreased tensile strength and hindered the masterbatch pelletising process. The final stage involved laminating the composite filament electrodes, with a 5 wt.% MWCNT/PP/(25 wt.% TPE) core and a TPE sheath, into a textile triboelectric impact detection sensor. This sensor, responding to contact and separation, produced an output voltage of approximately 5 V peak-to-peak per filament and 15 V peak-to-peak with five filaments under a 100 N force over 78.54 cm2. This preliminary study demonstrates an innovative approach to enhance the flexibility of conductive materials for smart textile applications, enabling the development of triboelectric sensor electrodes with potential applications in impact detection, fall monitoring, and motion tracking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells. An Overview of Potential Applications of Environmentally Friendly Hybrid Polymeric Materials. Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1