Multi-task interaction learning for accurate segmentation and classification of breast tumors in ultrasound images.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-24 DOI:10.1088/1361-6560/adae4d
Shenhai Zheng, Jianfei Li, Lihong Qiao, Xi Gao
{"title":"Multi-task interaction learning for accurate segmentation and classification of breast tumors in ultrasound images.","authors":"Shenhai Zheng, Jianfei Li, Lihong Qiao, Xi Gao","doi":"10.1088/1361-6560/adae4d","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks. &#xD;Approach. In this paper, we propose a multi-task learning network with deep inter-task interactions that exploits the inherently relations between two tasks. First, we fuse self-task attention and cross-task attention mechanisms to explore the two types of interaction information, location and semantic, between tasks. In addition, a feature aggregation block is developed based on the channel attention mechanism, which reduces the semantic differences between the decoder and the encoder. To exploit inter-task further, our network uses an circle training strategy to refine heterogeneous feature with the help of segmentation maps obtained from previous training. &#xD;Main results. The experimental results show that our method achieved excellent performance on the BUSI and BUS-B datasets, with DSCs of 81.95% and 86.41% for segmentation tasks, and F1 scores of 82.13% and 69.01% for classification tasks, respectively. &#xD;Significance. The proposed multi-task interaction learning not only enhances the performance of all tasks related to breast tumor segmentation and classification but also promotes research in multi-task learning, providing further insights for clinical applications.}.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adae4d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks. Approach. In this paper, we propose a multi-task learning network with deep inter-task interactions that exploits the inherently relations between two tasks. First, we fuse self-task attention and cross-task attention mechanisms to explore the two types of interaction information, location and semantic, between tasks. In addition, a feature aggregation block is developed based on the channel attention mechanism, which reduces the semantic differences between the decoder and the encoder. To exploit inter-task further, our network uses an circle training strategy to refine heterogeneous feature with the help of segmentation maps obtained from previous training. Main results. The experimental results show that our method achieved excellent performance on the BUSI and BUS-B datasets, with DSCs of 81.95% and 86.41% for segmentation tasks, and F1 scores of 82.13% and 69.01% for classification tasks, respectively. Significance. The proposed multi-task interaction learning not only enhances the performance of all tasks related to breast tumor segmentation and classification but also promotes research in multi-task learning, providing further insights for clinical applications.}.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1