{"title":"Multi-task interaction learning for accurate segmentation and classification of breast tumors in ultrasound images.","authors":"Shenhai Zheng, Jianfei Li, Lihong Qiao, Xi Gao","doi":"10.1088/1361-6560/adae4d","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks. 
Approach. In this paper, we propose a multi-task learning network with deep inter-task interactions that exploits the inherently relations between two tasks. First, we fuse self-task attention and cross-task attention mechanisms to explore the two types of interaction information, location and semantic, between tasks. In addition, a feature aggregation block is developed based on the channel attention mechanism, which reduces the semantic differences between the decoder and the encoder. To exploit inter-task further, our network uses an circle training strategy to refine heterogeneous feature with the help of segmentation maps obtained from previous training. 
Main results. The experimental results show that our method achieved excellent performance on the BUSI and BUS-B datasets, with DSCs of 81.95% and 86.41% for segmentation tasks, and F1 scores of 82.13% and 69.01% for classification tasks, respectively. 
Significance. The proposed multi-task interaction learning not only enhances the performance of all tasks related to breast tumor segmentation and classification but also promotes research in multi-task learning, providing further insights for clinical applications.}.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adae4d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks.
Approach. In this paper, we propose a multi-task learning network with deep inter-task interactions that exploits the inherently relations between two tasks. First, we fuse self-task attention and cross-task attention mechanisms to explore the two types of interaction information, location and semantic, between tasks. In addition, a feature aggregation block is developed based on the channel attention mechanism, which reduces the semantic differences between the decoder and the encoder. To exploit inter-task further, our network uses an circle training strategy to refine heterogeneous feature with the help of segmentation maps obtained from previous training.
Main results. The experimental results show that our method achieved excellent performance on the BUSI and BUS-B datasets, with DSCs of 81.95% and 86.41% for segmentation tasks, and F1 scores of 82.13% and 69.01% for classification tasks, respectively.
Significance. The proposed multi-task interaction learning not only enhances the performance of all tasks related to breast tumor segmentation and classification but also promotes research in multi-task learning, providing further insights for clinical applications.}.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry