Improving the Selectivity of Metal Oxide Semiconductor Sensors for Mustard Gas Simulant 2-Chloroethyl Ethyl Sulfide by Combining the Laminated Structure and Temperature Dynamic Modulation.
{"title":"Improving the Selectivity of Metal Oxide Semiconductor Sensors for Mustard Gas Simulant 2-Chloroethyl Ethyl Sulfide by Combining the Laminated Structure and Temperature Dynamic Modulation.","authors":"Yadong Liu, Siyue Zhao, Lijuan You, Yong Xu, Renjun Si, Shunping Zhang","doi":"10.3390/s25020525","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient selectivity is a major constraint to the further development of metal oxide semiconductor (MOS) sensors for chemical warfare agents, and this paper proposed an improved scheme combining catalytic layer/gas-sensitive layer laminated structure with temperature dynamic modulation for the Mustard gas (HD) MOS sensor. Mustard gas simulant 2-Chloroethyl ethyl sulfide (2-CEES) was used as the target gas, (Pt + Pd + Rh)@Al<sub>2</sub>O<sub>3</sub> as the catalytic layer material, (Pt + Rh)@WO<sub>3</sub> as the gas-sensitive layer material, the (Pt + Pd + Rh)@Al<sub>2</sub>O<sub>3</sub>/(Pt + Rh)@WO<sub>3</sub> sensor was prepared, and the sensor was tested for 2-CEES and 12 battlefield environment simulation gases under temperature dynamic modulation. The results showed that the sensor only showed obvious characteristic peaks in the resistance response curves to HD under certain conditions (100-400 °C, the highest temperature was held for 1 s and the lowest temperature was held for 2 s), and its peak height reached 6.12, which was far higher than other gases, thus realizing the high selectivity of the MOS sensor to 2-CEES. Meanwhile, the sensor also showed good sensitivity, detection limits, response/recovery times, anti-interference, and stability, which further verified the feasibility of the improved scheme.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020525","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Insufficient selectivity is a major constraint to the further development of metal oxide semiconductor (MOS) sensors for chemical warfare agents, and this paper proposed an improved scheme combining catalytic layer/gas-sensitive layer laminated structure with temperature dynamic modulation for the Mustard gas (HD) MOS sensor. Mustard gas simulant 2-Chloroethyl ethyl sulfide (2-CEES) was used as the target gas, (Pt + Pd + Rh)@Al2O3 as the catalytic layer material, (Pt + Rh)@WO3 as the gas-sensitive layer material, the (Pt + Pd + Rh)@Al2O3/(Pt + Rh)@WO3 sensor was prepared, and the sensor was tested for 2-CEES and 12 battlefield environment simulation gases under temperature dynamic modulation. The results showed that the sensor only showed obvious characteristic peaks in the resistance response curves to HD under certain conditions (100-400 °C, the highest temperature was held for 1 s and the lowest temperature was held for 2 s), and its peak height reached 6.12, which was far higher than other gases, thus realizing the high selectivity of the MOS sensor to 2-CEES. Meanwhile, the sensor also showed good sensitivity, detection limits, response/recovery times, anti-interference, and stability, which further verified the feasibility of the improved scheme.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.