A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-02-19 DOI:10.3390/s25041271
Ping Lan, Liguo Yao, Yao Lu, Taihua Zhang
{"title":"A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.","authors":"Ping Lan, Liguo Yao, Yao Lu, Taihua Zhang","doi":"10.3390/s25041271","DOIUrl":null,"url":null,"abstract":"<p><p>In the process of diagnosing the inter-turn short circuit fault of the joint permanent magnet synchronous motor of an industrial robot, due to the small and sparse fault sample data, it is easy to misdiagnose, and it is difficult to quickly and accurately evaluate the fault degree, lock the fault location, and track the fault causes. A multi-task causal knowledge fault diagnosis method for inter-turn short circuits of permanent magnet synchronous motors based on meta-learning is proposed. Firstly, the variation of parameters under the motor's inter-turn short circuit fault is thoroughly investigated, and the fault characteristic quantity is selected. Comprehensive simulations are conducted using Simulink, Simplorer, and Maxwell to generate data under different inter-turn short circuit fault states; meanwhile, the sample data are accurately labeled. Secondly, the sample data are introduced into the learning network for training, and the multi-task synchronous diagnosis of the fault degree and position of the short circuit between turns is realized. Finally, the Neo4j database based on causality knowledge of motor inter-turn short circuit fault is constructed. Experiments show that this method can diagnose the fault location, fault degree, and fault cause of the motor with different voltage unbalanced degrees. The diagnosis accuracy of fault degree is 99.75 ± 0.25%, and the diagnosis accuracy of fault location and fault degree is 99.45 ± 0.21%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041271","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of diagnosing the inter-turn short circuit fault of the joint permanent magnet synchronous motor of an industrial robot, due to the small and sparse fault sample data, it is easy to misdiagnose, and it is difficult to quickly and accurately evaluate the fault degree, lock the fault location, and track the fault causes. A multi-task causal knowledge fault diagnosis method for inter-turn short circuits of permanent magnet synchronous motors based on meta-learning is proposed. Firstly, the variation of parameters under the motor's inter-turn short circuit fault is thoroughly investigated, and the fault characteristic quantity is selected. Comprehensive simulations are conducted using Simulink, Simplorer, and Maxwell to generate data under different inter-turn short circuit fault states; meanwhile, the sample data are accurately labeled. Secondly, the sample data are introduced into the learning network for training, and the multi-task synchronous diagnosis of the fault degree and position of the short circuit between turns is realized. Finally, the Neo4j database based on causality knowledge of motor inter-turn short circuit fault is constructed. Experiments show that this method can diagnose the fault location, fault degree, and fault cause of the motor with different voltage unbalanced degrees. The diagnosis accuracy of fault degree is 99.75 ± 0.25%, and the diagnosis accuracy of fault location and fault degree is 99.45 ± 0.21%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元学习的 PMSM-ITSF 多任务因果知识故障诊断方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors. A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions. Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements. Predicting Perennial Ryegrass Cultivars and the Presence of an Epichloë Endophyte in Seeds Using Near-Infrared Spectroscopy (NIRS). A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1