Maxim Fatkullin, Ilia Petrov, Elizaveta Dogadina, Dmitry Kogolev, Alexandr Vorobiev, Pavel Postnikov, Jin-Ju Chen, Rafael Furlan de Oliveira, Olfa Kanoun, Raul D Rodriguez, Evgeniya Sheremet
{"title":"Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics.","authors":"Maxim Fatkullin, Ilia Petrov, Elizaveta Dogadina, Dmitry Kogolev, Alexandr Vorobiev, Pavel Postnikov, Jin-Ju Chen, Rafael Furlan de Oliveira, Olfa Kanoun, Raul D Rodriguez, Evgeniya Sheremet","doi":"10.3390/polym17020192","DOIUrl":null,"url":null,"abstract":"<p><p>Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance. To overcome these challenges, we report on a post-processing redox treatment that allows the tuning of the electrochemical properties of laser-induced rGO/polymer composite electrodes. We show that the polymer substrate plays a crucial role in the electrochemical modulation of the composites' properties, such as the electrode impedance, charge transfer resistance, and areal capacitance. The mechanism behind the reversible control of electrochemical properties of the rGO/polymer composites is the cleavage of polymer chains in the vicinity of rGO flakes during redox cycling, which exposes rGO active sites to interact with the electrolyte. Sequential redox cycling improves composite performance, allowing the development of devices such as electrolyte-gated transistors, which are widely used in chemical sensing applications. Our strategy enables the engineering of the electrochemical properties of rGO/polymer composites by post-treatment with dynamic switching, opening up new possibilities for flexible electronics and electrochemical applications having tunable properties.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020192","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance. To overcome these challenges, we report on a post-processing redox treatment that allows the tuning of the electrochemical properties of laser-induced rGO/polymer composite electrodes. We show that the polymer substrate plays a crucial role in the electrochemical modulation of the composites' properties, such as the electrode impedance, charge transfer resistance, and areal capacitance. The mechanism behind the reversible control of electrochemical properties of the rGO/polymer composites is the cleavage of polymer chains in the vicinity of rGO flakes during redox cycling, which exposes rGO active sites to interact with the electrolyte. Sequential redox cycling improves composite performance, allowing the development of devices such as electrolyte-gated transistors, which are widely used in chemical sensing applications. Our strategy enables the engineering of the electrochemical properties of rGO/polymer composites by post-treatment with dynamic switching, opening up new possibilities for flexible electronics and electrochemical applications having tunable properties.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.