{"title":"Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.","authors":"Xue Li, Yue Zhou, Hang Chen, Zetian Guo, Jinlian Zhang, Wenli Chen","doi":"10.1007/s00299-024-03397-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies. In this study, we focused on the roles of SDE4310, SDE4435 and SDE4955 in citrus. We found that the expression of SDE4310, SDE4435 and SDE4955 to increase with increasing citrus immune genes CsPR1, CsPR2, CsPR5, CsNPR1, CsRBOHD, CsMAP3K and CsBIK1, suggesting that the level of citrus immunity could be judged by the expression of SDE. To further explore the relationship between these three SDEs and citrus immunity, we established a transient expression system in citrus leaves, using gold nanoparticle-polyethyleneimine (AuNPs-PEI) to deliver recombinant plasmid containing SDE4310, SDE4435 or SDE4955 respectively into citrus leaves. Results showed that SDE4310, SDE4435 and SDE4955 were successfully expressed in citrus leaves using this transient expression system, and found that SDE4310, SDE4435 and SDE4955 could promote the CLas proliferation by decreasing the immune gene expression of the citrus. Additionally, we used AuNPs-PEI to deliver siRNA<sub>4310</sub> to citrus cells, significantly reducing the expression of SDE4310 within 3 days. Although the suppression of SDE4310 expression did not inhibit the CLas proliferation, it increased the expression level of CsPR1, CsNPR1 and CsBIK1. This is also the first time that AuNPs-PEI has been found to be able to deliver exogenous plasmids into citrus cells and express the target protein, providing a new method for future studies on citrus HLB.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"38"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03397-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies. In this study, we focused on the roles of SDE4310, SDE4435 and SDE4955 in citrus. We found that the expression of SDE4310, SDE4435 and SDE4955 to increase with increasing citrus immune genes CsPR1, CsPR2, CsPR5, CsNPR1, CsRBOHD, CsMAP3K and CsBIK1, suggesting that the level of citrus immunity could be judged by the expression of SDE. To further explore the relationship between these three SDEs and citrus immunity, we established a transient expression system in citrus leaves, using gold nanoparticle-polyethyleneimine (AuNPs-PEI) to deliver recombinant plasmid containing SDE4310, SDE4435 or SDE4955 respectively into citrus leaves. Results showed that SDE4310, SDE4435 and SDE4955 were successfully expressed in citrus leaves using this transient expression system, and found that SDE4310, SDE4435 and SDE4955 could promote the CLas proliferation by decreasing the immune gene expression of the citrus. Additionally, we used AuNPs-PEI to deliver siRNA4310 to citrus cells, significantly reducing the expression of SDE4310 within 3 days. Although the suppression of SDE4310 expression did not inhibit the CLas proliferation, it increased the expression level of CsPR1, CsNPR1 and CsBIK1. This is also the first time that AuNPs-PEI has been found to be able to deliver exogenous plasmids into citrus cells and express the target protein, providing a new method for future studies on citrus HLB.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.