{"title":"Evaluating Oil Palm Trunk Biochar and Palm Oil as Environmentally Friendly Sustainable Additives in Green Natural Rubber Composites.","authors":"Narong Chueangchayaphan, Manop Tarasin, Wimonwan Phonjon, Wannarat Chueangchayaphan","doi":"10.3390/polym17020223","DOIUrl":null,"url":null,"abstract":"<p><p>This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated. OPTB enhanced the characteristics of the composites, as demonstrated by a rise in dielectric constant, thermal stability, storage modulus, glass transition temperature (T<sub>g</sub>), hardness and modulus at 300% elongation, along with a decrease in the loss tangent (tan δ). Tear strength exhibited an increase with OPTB content up to a specific threshold, whereas tensile strength and elongation at break declined. This implies a compromise between the various mechanical properties when incorporating OPTB as a filler. This work supports the potential application of OPTB as a renewable substitute for CB in the rubber industry, particularly in tire production and other industrial rubber applications, which would also bring environmental, sustainability, and economic benefits for the palm oil-related industry.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020223","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated. OPTB enhanced the characteristics of the composites, as demonstrated by a rise in dielectric constant, thermal stability, storage modulus, glass transition temperature (Tg), hardness and modulus at 300% elongation, along with a decrease in the loss tangent (tan δ). Tear strength exhibited an increase with OPTB content up to a specific threshold, whereas tensile strength and elongation at break declined. This implies a compromise between the various mechanical properties when incorporating OPTB as a filler. This work supports the potential application of OPTB as a renewable substitute for CB in the rubber industry, particularly in tire production and other industrial rubber applications, which would also bring environmental, sustainability, and economic benefits for the palm oil-related industry.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.