Design, Modeling, and Validation of a Compact, Energy-Efficient Mixing Screw for Sustainable Polymer Processing.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-01-16 DOI:10.3390/polym17020215
David O Kazmer, Stiven Kodra
{"title":"Design, Modeling, and Validation of a Compact, Energy-Efficient Mixing Screw for Sustainable Polymer Processing.","authors":"David O Kazmer, Stiven Kodra","doi":"10.3390/polym17020215","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.75 compression ratio. Non-isothermal, non-Newtonian simulations modeled the thermal and flow behavior for high-impact polystyrene (HIPS) and recycled polypropylene (rPP) under various operating conditions. Experimental validation was conducted using a 20 mm pilot-scale extruder with screw speeds ranging from 10 to 40 RPM and barrel temperatures of 220 °C and 240 °C. Results showed a strong linear dependence of mass output on screw speed, with maximum mass throughputs of 0.58 kg/h for HIPS and 0.74 kg/h for rPP at 40 RPM. Specific energy consumption (SEC) was calculated as 0.264 kWh/kg for HIPS and 0.344 kWh/kg for rPP, corresponding to efficiencies of 31.5% and 56.5% relative to theoretical minimum energy requirements. Compared to traditional general-purpose and barrier screws with L/D ratios of 27:1, the mixing screw demonstrated improved energy efficiency and reduced residence time distributions. These findings suggest the potential of the mixing screw for compact extrusion systems, including 3D printing and other sustainable polymer and bioplastics processing applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020215","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.75 compression ratio. Non-isothermal, non-Newtonian simulations modeled the thermal and flow behavior for high-impact polystyrene (HIPS) and recycled polypropylene (rPP) under various operating conditions. Experimental validation was conducted using a 20 mm pilot-scale extruder with screw speeds ranging from 10 to 40 RPM and barrel temperatures of 220 °C and 240 °C. Results showed a strong linear dependence of mass output on screw speed, with maximum mass throughputs of 0.58 kg/h for HIPS and 0.74 kg/h for rPP at 40 RPM. Specific energy consumption (SEC) was calculated as 0.264 kWh/kg for HIPS and 0.344 kWh/kg for rPP, corresponding to efficiencies of 31.5% and 56.5% relative to theoretical minimum energy requirements. Compared to traditional general-purpose and barrier screws with L/D ratios of 27:1, the mixing screw demonstrated improved energy efficiency and reduced residence time distributions. These findings suggest the potential of the mixing screw for compact extrusion systems, including 3D printing and other sustainable polymer and bioplastics processing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells. An Overview of Potential Applications of Environmentally Friendly Hybrid Polymeric Materials. Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1