Cellulose-Based Aerogels for Environmentally Sustainable Applications: A Review of the Production, Modification, and Sorption of Environmental Contaminants.
Fernanda Wickboldt Stark, Pascal Silas Thue, André Luiz Missio, Fernando Machado Machado, Rafael de Avila Delucis, Robson Andreazza
{"title":"Cellulose-Based Aerogels for Environmentally Sustainable Applications: A Review of the Production, Modification, and Sorption of Environmental Contaminants.","authors":"Fernanda Wickboldt Stark, Pascal Silas Thue, André Luiz Missio, Fernando Machado Machado, Rafael de Avila Delucis, Robson Andreazza","doi":"10.3390/polym17020236","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue. Cellulose-based aerogels, derived from abundant, renewable, and biodegradable sources, particularly stand out for their potential in adsorption applications. However, challenges arise in water and wastewater treatment due to cellulose aerogel's inherent hydrophilicity. To overcome this limitation, incorporating new components and employing modification processes becomes essential. This article explores the production phases and diverse modifications of cellulose aerogels, aiming to enhance their adsorption capabilities for various environmental contaminants. By addressing hydrophilicity issues and developing stable composites, cellulose aerogels can contribute significantly to efficient and sustainable solutions in the quest for cleaner ecosystems and improved human health.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020236","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue. Cellulose-based aerogels, derived from abundant, renewable, and biodegradable sources, particularly stand out for their potential in adsorption applications. However, challenges arise in water and wastewater treatment due to cellulose aerogel's inherent hydrophilicity. To overcome this limitation, incorporating new components and employing modification processes becomes essential. This article explores the production phases and diverse modifications of cellulose aerogels, aiming to enhance their adsorption capabilities for various environmental contaminants. By addressing hydrophilicity issues and developing stable composites, cellulose aerogels can contribute significantly to efficient and sustainable solutions in the quest for cleaner ecosystems and improved human health.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.