Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO2/SiO2 Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-01-10 DOI:10.3390/polym17020161
Jegan Athinarayanan, Vaiyapuri Subbarayan Periasamy, Ali A Alshatwi
{"title":"Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO<sub>2</sub>/SiO<sub>2</sub> Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.","authors":"Jegan Athinarayanan, Vaiyapuri Subbarayan Periasamy, Ali A Alshatwi","doi":"10.3390/polym17020161","DOIUrl":null,"url":null,"abstract":"<p><p>The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO<sub>2</sub> and <i>Pennisetum glaucum</i> residue-derived biosilica embedded in gum arabic nanocomposite. The SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic nanocomposite morphological and crystalline features were investigated using a scanning electron microscope and X-ray diffractometer, respectively. The SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic cytocompatibility was assessed using cell viability and microscopic assay. The SEM images revealed that 70-90 nm biosilica and 70-100 nm TiO<sub>2</sub> nanostructures were present on the gum arabic. According to MTT assay and microscopic examination results, SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic do not inhibit cell viability and modulate cellular structural features; it inferred that SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic possess good cytocompatibility on human mesenchymal stem cells even up to 400 µg/mL. The date fruits were immersed in SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic-based coating mixtures and stored at 6 °C for 4 weeks. When date fruits were examined during storage, it was found that the applied coatings contributed to maintaining physicochemical features (e.g., color and texture). These findings suggest that the SiO<sub>2</sub>/TiO<sub>2</sub>/gum arabic-based coating can be applied to extend the shelf life of dates.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020161","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO2 and Pennisetum glaucum residue-derived biosilica embedded in gum arabic nanocomposite. The SiO2/TiO2/gum arabic nanocomposite morphological and crystalline features were investigated using a scanning electron microscope and X-ray diffractometer, respectively. The SiO2/TiO2/gum arabic cytocompatibility was assessed using cell viability and microscopic assay. The SEM images revealed that 70-90 nm biosilica and 70-100 nm TiO2 nanostructures were present on the gum arabic. According to MTT assay and microscopic examination results, SiO2/TiO2/gum arabic do not inhibit cell viability and modulate cellular structural features; it inferred that SiO2/TiO2/gum arabic possess good cytocompatibility on human mesenchymal stem cells even up to 400 µg/mL. The date fruits were immersed in SiO2/TiO2/gum arabic-based coating mixtures and stored at 6 °C for 4 weeks. When date fruits were examined during storage, it was found that the applied coatings contributed to maintaining physicochemical features (e.g., color and texture). These findings suggest that the SiO2/TiO2/gum arabic-based coating can be applied to extend the shelf life of dates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells. An Overview of Potential Applications of Environmentally Friendly Hybrid Polymeric Materials. Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1