Govindarajan Kannan, Evangelin Ramani Sujatha, Abdullah Almajed, Arif Ali Baig Moghal
{"title":"Microbial-Derived Biopolymers: A Pathway to Sustainable Civil Engineering.","authors":"Govindarajan Kannan, Evangelin Ramani Sujatha, Abdullah Almajed, Arif Ali Baig Moghal","doi":"10.3390/polym17020172","DOIUrl":null,"url":null,"abstract":"<p><p>Modern innovations increasingly prioritize eco-friendliness, aiming to pave the way for a sustainable future. The field of civil engineering is no exception to this approach, and, in fact, it is associated with almost every sustainable development goal framed by the United Nations. Therefore, the sector has a pivotal role in achieving these goals. One such innovation is exploring the possibilities of using nature-friendly materials in different applications. Biopolymers are substances that are produced either by the chemical synthesis of natural materials or by the biosynthesizing activities of microorganisms. Microbial-derived biopolymers are known for their non-toxic and nature-friendly characteristics. However, their applications are mostly restricted to the field of biotechnology and not fully explored in civil engineering. This article reviews various microbial-derived biopolymers, focusing on the types available on the market, their source and properties, and more importantly, their wide range of applications in the civil engineering field. Additionally, the article explores the prospects for future research and the potential for the practical implementation of these techniques in the pursuit of a sustainable future.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern innovations increasingly prioritize eco-friendliness, aiming to pave the way for a sustainable future. The field of civil engineering is no exception to this approach, and, in fact, it is associated with almost every sustainable development goal framed by the United Nations. Therefore, the sector has a pivotal role in achieving these goals. One such innovation is exploring the possibilities of using nature-friendly materials in different applications. Biopolymers are substances that are produced either by the chemical synthesis of natural materials or by the biosynthesizing activities of microorganisms. Microbial-derived biopolymers are known for their non-toxic and nature-friendly characteristics. However, their applications are mostly restricted to the field of biotechnology and not fully explored in civil engineering. This article reviews various microbial-derived biopolymers, focusing on the types available on the market, their source and properties, and more importantly, their wide range of applications in the civil engineering field. Additionally, the article explores the prospects for future research and the potential for the practical implementation of these techniques in the pursuit of a sustainable future.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.