Depression Recognition Using Daily Wearable-Derived Physiological Data.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-19 DOI:10.3390/s25020567
Xinyu Shui, Hao Xu, Shuping Tan, Dan Zhang
{"title":"Depression Recognition Using Daily Wearable-Derived Physiological Data.","authors":"Xinyu Shui, Hao Xu, Shuping Tan, Dan Zhang","doi":"10.3390/s25020567","DOIUrl":null,"url":null,"abstract":"<p><p>The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states. The present study leverages multimodal wristband devices to collect data from fifty-eight participants clinically diagnosed with depression during their normal daytime activities over six hours. Data collected include pulse wave, skin conductance, and triaxial acceleration. For comparison, we also utilized data from fifty-eight matched healthy controls from a publicly available dataset, collected using the same devices over equivalent durations. Our aim was to identify depressive individuals through the analysis of multimodal physiological measurements derived from wearable devices in daily life scenarios. We extracted static features such as the mean, variance, skewness, and kurtosis of physiological indicators like heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distinguished depressive and non-depressive individuals with varying classification accuracies on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and 76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived physiological data for depression recognition. The achieved classification accuracies suggest that this approach could be integrated into clinical settings for the early detection and monitoring of depressive symptoms. Future work will explore the potential of these methods for personalized interventions and real-time monitoring, offering a promising avenue for enhancing mental health care through the integration of wearable technology.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020567","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states. The present study leverages multimodal wristband devices to collect data from fifty-eight participants clinically diagnosed with depression during their normal daytime activities over six hours. Data collected include pulse wave, skin conductance, and triaxial acceleration. For comparison, we also utilized data from fifty-eight matched healthy controls from a publicly available dataset, collected using the same devices over equivalent durations. Our aim was to identify depressive individuals through the analysis of multimodal physiological measurements derived from wearable devices in daily life scenarios. We extracted static features such as the mean, variance, skewness, and kurtosis of physiological indicators like heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distinguished depressive and non-depressive individuals with varying classification accuracies on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and 76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived physiological data for depression recognition. The achieved classification accuracies suggest that this approach could be integrated into clinical settings for the early detection and monitoring of depressive symptoms. Future work will explore the potential of these methods for personalized interventions and real-time monitoring, offering a promising avenue for enhancing mental health care through the integration of wearable technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors. A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions. Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements. Predicting Perennial Ryegrass Cultivars and the Presence of an Epichloë Endophyte in Seeds Using Near-Infrared Spectroscopy (NIRS). A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1