Marwa M Khalaf, Emad H M Hassanein, Hamada S Qebesy, Abdullatif A Ahmed, Heba M Mahmoud
{"title":"Granisetron ameliorates doxorubicin-evoked nephrotoxicity via modulation of Nrf2 and TLR4/p38 MAPK/NLRP3 signals in rats.","authors":"Marwa M Khalaf, Emad H M Hassanein, Hamada S Qebesy, Abdullatif A Ahmed, Heba M Mahmoud","doi":"10.1016/j.tice.2025.102744","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is an anthracycline chemotherapy employed in treating malignancies. Unfortunately, the clinical application of DOX is limited due to its nephrotoxicity. Granisetron (GRAN) is a 5-HT3 receptor blocker used widely to manage post-chemotherapy nausea and vomiting with anti-inflammatory, anti-oxidant, and anti-apoptotic bioactivities. We plan to examine the renoprotective effect of GRAN against DOX-associated renal toxicity. In this investigation, twenty-four adult male Wistar rats were allocated to control, DOX (30 mg/kg, i.p), and GRAN (2.5 mg/kg, p.o) + DOX groups. GRAN attenuated renal impairment induced by DOX in rats by decreasing the BUN, creatinine, KIM-1, and Cys-C levels, and such finding is supported by attenuating histological alterations caused by DOX. GRAN combated oxidative stress proved by decreasing MDA content and elevating GSH and CAT levels mediated by Nrf2 activation. GRAN suppressed inflammation evidenced by decreasing IL-6 and TNF-α levels mediated by downregulation of inflammatory sensitive controllers TLR-4, NLRP3, and p38 MAPK. GRAN prevented apoptosis by controlling renal expression of BAX, caspase-3 and Bcl2. Therefore, GRAN holds promise agent against DOX-induced renal toxicity by upregulating Nrf2 and suppressing apoptosis and inflammatory cascadeTLR4/p38 MAPK/ NLRP3.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102744"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102744","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy employed in treating malignancies. Unfortunately, the clinical application of DOX is limited due to its nephrotoxicity. Granisetron (GRAN) is a 5-HT3 receptor blocker used widely to manage post-chemotherapy nausea and vomiting with anti-inflammatory, anti-oxidant, and anti-apoptotic bioactivities. We plan to examine the renoprotective effect of GRAN against DOX-associated renal toxicity. In this investigation, twenty-four adult male Wistar rats were allocated to control, DOX (30 mg/kg, i.p), and GRAN (2.5 mg/kg, p.o) + DOX groups. GRAN attenuated renal impairment induced by DOX in rats by decreasing the BUN, creatinine, KIM-1, and Cys-C levels, and such finding is supported by attenuating histological alterations caused by DOX. GRAN combated oxidative stress proved by decreasing MDA content and elevating GSH and CAT levels mediated by Nrf2 activation. GRAN suppressed inflammation evidenced by decreasing IL-6 and TNF-α levels mediated by downregulation of inflammatory sensitive controllers TLR-4, NLRP3, and p38 MAPK. GRAN prevented apoptosis by controlling renal expression of BAX, caspase-3 and Bcl2. Therefore, GRAN holds promise agent against DOX-induced renal toxicity by upregulating Nrf2 and suppressing apoptosis and inflammatory cascadeTLR4/p38 MAPK/ NLRP3.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.