Joseph Matheson, Moises Exposito-Alonso, Joanna Masel
{"title":"Substitution load revisited: a high proportion of deaths can be selective.","authors":"Joseph Matheson, Moises Exposito-Alonso, Joanna Masel","doi":"10.1093/genetics/iyaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Haldane's Dilemma refers to the concern that the need for many \"selective deaths\" to complete a substitution (i.e. selective sweep) creates a speed limit to adaptation. However, discussion of this concern has been marked by confusion, especially with respect to the term \"substitution load\". Here we distinguish different historical lines of reasoning, and identify one, focused on finite reproductive excess and the proportion of deaths that are \"selective\" (i.e. causally contribute to adaptive allele frequency changes), that has not yet been fully addressed. We develop this into a more general theoretical model that can apply to populations with any life history, even those for which a generation or even an individual are not well defined. The actual speed of adaptive evolution is coupled to the proportion of deaths that are selective. The degree to which reproductive excess enables a high proportion of selective deaths depends on the details of when selection takes place relative to density regulation, and there is therefore no general expression for a speed limit. To make these concepts concrete, we estimate both reproductive excess, and the proportion of deaths that are selective, from a dataset measuring survival of 517 different genotypes of Arabidopsis thaliana grown in eight different environmental conditions. In this dataset, a much higher proportion of deaths contribute to adaptation, in all environmental conditions, than the 10% cap that was anticipated as substantially restricting adaptation during historical discussions of speed limits.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Haldane's Dilemma refers to the concern that the need for many "selective deaths" to complete a substitution (i.e. selective sweep) creates a speed limit to adaptation. However, discussion of this concern has been marked by confusion, especially with respect to the term "substitution load". Here we distinguish different historical lines of reasoning, and identify one, focused on finite reproductive excess and the proportion of deaths that are "selective" (i.e. causally contribute to adaptive allele frequency changes), that has not yet been fully addressed. We develop this into a more general theoretical model that can apply to populations with any life history, even those for which a generation or even an individual are not well defined. The actual speed of adaptive evolution is coupled to the proportion of deaths that are selective. The degree to which reproductive excess enables a high proportion of selective deaths depends on the details of when selection takes place relative to density regulation, and there is therefore no general expression for a speed limit. To make these concepts concrete, we estimate both reproductive excess, and the proportion of deaths that are selective, from a dataset measuring survival of 517 different genotypes of Arabidopsis thaliana grown in eight different environmental conditions. In this dataset, a much higher proportion of deaths contribute to adaptation, in all environmental conditions, than the 10% cap that was anticipated as substantially restricting adaptation during historical discussions of speed limits.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.