Two algorithms for improving model-based diagnosis using multiple observations and deep learning.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-22 DOI:10.1016/j.neunet.2025.107185
Ran Tai, Dantong Ouyang, Liming Zhang
{"title":"Two algorithms for improving model-based diagnosis using multiple observations and deep learning.","authors":"Ran Tai, Dantong Ouyang, Liming Zhang","doi":"10.1016/j.neunet.2025.107185","DOIUrl":null,"url":null,"abstract":"<p><p>Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation. To address this challenge, we introduce two novel algorithms, Discret2DiMO (Discret2Di with Multiple Observations) and Discret2DiMO-DC (Discret2Di with Multiple Observations and Dictionary Cache), which enhance MBD by integrating multiple observations with deep learning techniques. Experimental evaluations on a simulated three-tank model demonstrate that Discret2DiMO significantly improves diagnostic accuracy, achieving up to a 685.06% increase and an average improvement of 59.18% over Discret2Di across all test cases. To address computational overhead, Discret2DiMO-DC additionally implements a caching mechanism that eliminates redundant computations during diagnosis. Remarkably, Discret2DiMO-DC achieves comparable accuracy while reducing computation time by an average of 95.74% compared to Discret2DiMO and 89.42% compared to Discret2Di, with computation times reduced by two orders of magnitude. These results indicate that our proposed algorithms significantly enhance diagnostic accuracy and efficiency in MBD compared with the state-of-the-art algorithm, highlighting the potential of integrating multiple observations with deep learning for more accurate and efficient diagnostics in complex systems.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107185"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107185","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation. To address this challenge, we introduce two novel algorithms, Discret2DiMO (Discret2Di with Multiple Observations) and Discret2DiMO-DC (Discret2Di with Multiple Observations and Dictionary Cache), which enhance MBD by integrating multiple observations with deep learning techniques. Experimental evaluations on a simulated three-tank model demonstrate that Discret2DiMO significantly improves diagnostic accuracy, achieving up to a 685.06% increase and an average improvement of 59.18% over Discret2Di across all test cases. To address computational overhead, Discret2DiMO-DC additionally implements a caching mechanism that eliminates redundant computations during diagnosis. Remarkably, Discret2DiMO-DC achieves comparable accuracy while reducing computation time by an average of 95.74% compared to Discret2DiMO and 89.42% compared to Discret2Di, with computation times reduced by two orders of magnitude. These results indicate that our proposed algorithms significantly enhance diagnostic accuracy and efficiency in MBD compared with the state-of-the-art algorithm, highlighting the potential of integrating multiple observations with deep learning for more accurate and efficient diagnostics in complex systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1