{"title":"Two algorithms for improving model-based diagnosis using multiple observations and deep learning.","authors":"Ran Tai, Dantong Ouyang, Liming Zhang","doi":"10.1016/j.neunet.2025.107185","DOIUrl":null,"url":null,"abstract":"<p><p>Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation. To address this challenge, we introduce two novel algorithms, Discret2DiMO (Discret2Di with Multiple Observations) and Discret2DiMO-DC (Discret2Di with Multiple Observations and Dictionary Cache), which enhance MBD by integrating multiple observations with deep learning techniques. Experimental evaluations on a simulated three-tank model demonstrate that Discret2DiMO significantly improves diagnostic accuracy, achieving up to a 685.06% increase and an average improvement of 59.18% over Discret2Di across all test cases. To address computational overhead, Discret2DiMO-DC additionally implements a caching mechanism that eliminates redundant computations during diagnosis. Remarkably, Discret2DiMO-DC achieves comparable accuracy while reducing computation time by an average of 95.74% compared to Discret2DiMO and 89.42% compared to Discret2Di, with computation times reduced by two orders of magnitude. These results indicate that our proposed algorithms significantly enhance diagnostic accuracy and efficiency in MBD compared with the state-of-the-art algorithm, highlighting the potential of integrating multiple observations with deep learning for more accurate and efficient diagnostics in complex systems.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107185"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107185","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation. To address this challenge, we introduce two novel algorithms, Discret2DiMO (Discret2Di with Multiple Observations) and Discret2DiMO-DC (Discret2Di with Multiple Observations and Dictionary Cache), which enhance MBD by integrating multiple observations with deep learning techniques. Experimental evaluations on a simulated three-tank model demonstrate that Discret2DiMO significantly improves diagnostic accuracy, achieving up to a 685.06% increase and an average improvement of 59.18% over Discret2Di across all test cases. To address computational overhead, Discret2DiMO-DC additionally implements a caching mechanism that eliminates redundant computations during diagnosis. Remarkably, Discret2DiMO-DC achieves comparable accuracy while reducing computation time by an average of 95.74% compared to Discret2DiMO and 89.42% compared to Discret2Di, with computation times reduced by two orders of magnitude. These results indicate that our proposed algorithms significantly enhance diagnostic accuracy and efficiency in MBD compared with the state-of-the-art algorithm, highlighting the potential of integrating multiple observations with deep learning for more accurate and efficient diagnostics in complex systems.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.