Haoyan Cheng , Beng Ma , Wanting Xia , Ying Yu , Jiayi Li , Keke Zhang , Linlin Shi , Hao Hu , Shegan Gao , Zhihong Zhu
{"title":"Synergistic photothermal and chemo-therapeutic platform utilizing Cu2-xSe/PDA/AIPH nanoparticles for targeted tumor eradication","authors":"Haoyan Cheng , Beng Ma , Wanting Xia , Ying Yu , Jiayi Li , Keke Zhang , Linlin Shi , Hao Hu , Shegan Gao , Zhihong Zhu","doi":"10.1016/j.bioadv.2025.214196","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed an innovative Cu<sub>2-x</sub>Se/PDA/AIPH nanoparticle platform that combines photothermal therapy and chemotherapy for effective tumor treatment. The Cu<sub>2-x</sub>Se nanoparticles, known for their strong near-infrared (NIR) absorption, were encapsulated within a polydopamine (PDA) and 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) matrix. Upon NIR irradiation, the platform triggers localized heating and subsequent thermal decomposition of AIPH, releasing ROS to induce significant oxidative damage in tumor cells. <em>In vitro</em> and <em>in vivo</em> experiments demonstrated that Cu<sub>2-x</sub>Se/PDA/AIPH nanoparticles exhibit excellent biocompatibility, effective photothermal conversion, and potent anticancer efficacy. This multifunctional nanosystem offers a promising approach for enhancing tumor therapy by combining PTT with ROS-mediated chemotherapy.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214196"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed an innovative Cu2-xSe/PDA/AIPH nanoparticle platform that combines photothermal therapy and chemotherapy for effective tumor treatment. The Cu2-xSe nanoparticles, known for their strong near-infrared (NIR) absorption, were encapsulated within a polydopamine (PDA) and 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) matrix. Upon NIR irradiation, the platform triggers localized heating and subsequent thermal decomposition of AIPH, releasing ROS to induce significant oxidative damage in tumor cells. In vitro and in vivo experiments demonstrated that Cu2-xSe/PDA/AIPH nanoparticles exhibit excellent biocompatibility, effective photothermal conversion, and potent anticancer efficacy. This multifunctional nanosystem offers a promising approach for enhancing tumor therapy by combining PTT with ROS-mediated chemotherapy.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!