Interference of Celastrol with Cell Wall Synthesis and Biofilm Formation in Staphylococcus epidermidis.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES Antibiotics-Basel Pub Date : 2025-01-03 DOI:10.3390/antibiotics14010026
Leandro de León Guerra, Nayely Padilla Montaño, Laila Moujir
{"title":"Interference of Celastrol with Cell Wall Synthesis and Biofilm Formation in <i>Staphylococcus epidermidis</i>.","authors":"Leandro de León Guerra, Nayely Padilla Montaño, Laila Moujir","doi":"10.3390/antibiotics14010026","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: The emergence of antibiotic-resistant bacteria, including <i>Staphylococcus epidermidis</i>, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. <b>Objectives:</b> This study aims to evaluate the antibacterial effects, mechanism of action, and antibiofilm activity of celastrol against <i>S. epidermidis</i>, an emerging opportunistic pathogen. <b>Methods</b>: To investigate the mechanism of action of celastrol, its antibacterial activity was evaluated by determining the time-kill curves, assessing macromolecular synthesis, and analysing its impact on the stability and functionality of the bacterial cell membrane. Additionally, its effect on biofilm formation and disruption was examined. <b>Results:</b> Celastrol exhibited significant antibacterial activity with a minimal inhibitory concentration (MIC) of 0.31 μg/mL and minimal bactericidal concentration (MBC) of 15 μg/mL, which is superior to conventional antibiotics used as control. Time-kill assays revealed a concentration-dependent bactericidal effect, with a shift from bacteriostatic activity at lower concentrations to bactericidal and lytic effect at higher concentrations. Celastrol inhibited cell wall biosynthesis by blocking the incorporation of N-acetylglucosamine (NAG) into peptidoglycan. In contrast, the cytoplasmic membrane was only affected at higher concentrations of the compound or after prolonged exposure times. Additionally, celastrol was able to disrupt biofilm formation at concentrations of 0.9 μg/mL and to eradicate pre-formed biofilms at 7.5 μg/mL in <i>S. epidermidis</i>. <b>Conclusions</b>: Celastrol exhibits significant antibacterial and antibiofilm activities against <i>S. epidermidis</i>, with a primary action on cell wall synthesis. Its efficacy in disrupting the formation of biofilms and pre-formed biofilms suggests its potential as a therapeutic agent for infections caused by biofilm-forming <i>S. epidermidis</i> resistant to conventional treatments.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14010026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The emergence of antibiotic-resistant bacteria, including Staphylococcus epidermidis, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. Objectives: This study aims to evaluate the antibacterial effects, mechanism of action, and antibiofilm activity of celastrol against S. epidermidis, an emerging opportunistic pathogen. Methods: To investigate the mechanism of action of celastrol, its antibacterial activity was evaluated by determining the time-kill curves, assessing macromolecular synthesis, and analysing its impact on the stability and functionality of the bacterial cell membrane. Additionally, its effect on biofilm formation and disruption was examined. Results: Celastrol exhibited significant antibacterial activity with a minimal inhibitory concentration (MIC) of 0.31 μg/mL and minimal bactericidal concentration (MBC) of 15 μg/mL, which is superior to conventional antibiotics used as control. Time-kill assays revealed a concentration-dependent bactericidal effect, with a shift from bacteriostatic activity at lower concentrations to bactericidal and lytic effect at higher concentrations. Celastrol inhibited cell wall biosynthesis by blocking the incorporation of N-acetylglucosamine (NAG) into peptidoglycan. In contrast, the cytoplasmic membrane was only affected at higher concentrations of the compound or after prolonged exposure times. Additionally, celastrol was able to disrupt biofilm formation at concentrations of 0.9 μg/mL and to eradicate pre-formed biofilms at 7.5 μg/mL in S. epidermidis. Conclusions: Celastrol exhibits significant antibacterial and antibiofilm activities against S. epidermidis, with a primary action on cell wall synthesis. Its efficacy in disrupting the formation of biofilms and pre-formed biofilms suggests its potential as a therapeutic agent for infections caused by biofilm-forming S. epidermidis resistant to conventional treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
期刊最新文献
Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children. Nuclear Magnetic Resonance Fingerprinting and Principal Component Analysis Strategies Lead to Anti-Tuberculosis Natural Product Discovery from Actinomycetes. Evaluation of Cinnamon Essential Oil and Its Emulsion on Biofilm-Associated Components of Acinetobacter baumannii Clinical Strains. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1