Flavio Petricca, Julie C. Castillo-Rogez, Antonio Genova, Mohit Melwani Daswani, Marshall J. Styczinski, Corey J. Cochrane, Steven D. Vance
{"title":"Partial differentiation of Europa and implications for the origin of materials in the Jupiter system","authors":"Flavio Petricca, Julie C. Castillo-Rogez, Antonio Genova, Mohit Melwani Daswani, Marshall J. Styczinski, Corey J. Cochrane, Steven D. Vance","doi":"10.1038/s41550-024-02469-4","DOIUrl":null,"url":null,"abstract":"<p>The Galileo mission measured the gravity field around Europa. The results indicated that the moon’s interior is mostly made of rock (~90 wt%). However, the level of differentiation of the deep interior is still poorly understood. We constrain the interior of Europa using Galileo gravity data and a combination of geophysical and geochemical models that connects the origin of the materials accreted in the Jupiter system with the observed gravity field. The results indicate that Europa is partially differentiated and that it probably formed primarily from CV chondrite material. We investigate this finding by coupling thermal evolution models with a detailed treatment of Fe–FeS melting. The metal–silicate differentiation temperatures (>1,600 K) are not attained if Europa formed about 4 Myr after the production of calcium aluminium inclusions. The leaching of potassium during thermal metamorphism further limits differentiation. Our results imply a cold evolution for Europa and suggest that part of water inventory of Europa was supplied by external sources, possibly by comets. These implications can be tested with the gravity data that will be acquired by Europa Clipper and JUICE.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"58 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02469-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Galileo mission measured the gravity field around Europa. The results indicated that the moon’s interior is mostly made of rock (~90 wt%). However, the level of differentiation of the deep interior is still poorly understood. We constrain the interior of Europa using Galileo gravity data and a combination of geophysical and geochemical models that connects the origin of the materials accreted in the Jupiter system with the observed gravity field. The results indicate that Europa is partially differentiated and that it probably formed primarily from CV chondrite material. We investigate this finding by coupling thermal evolution models with a detailed treatment of Fe–FeS melting. The metal–silicate differentiation temperatures (>1,600 K) are not attained if Europa formed about 4 Myr after the production of calcium aluminium inclusions. The leaching of potassium during thermal metamorphism further limits differentiation. Our results imply a cold evolution for Europa and suggest that part of water inventory of Europa was supplied by external sources, possibly by comets. These implications can be tested with the gravity data that will be acquired by Europa Clipper and JUICE.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.