Jia-Qing Zhou, Fu-Shuo Gan, Yi-Feng Chen, Jie Tan, Liangqing Wang, Zhi-Jie Che, Jiu Jimmy Jiao
{"title":"Novel Unified Model for Geofluid Nonlinear Flows in Rock Fractures","authors":"Jia-Qing Zhou, Fu-Shuo Gan, Yi-Feng Chen, Jie Tan, Liangqing Wang, Zhi-Jie Che, Jiu Jimmy Jiao","doi":"10.1029/2024jb030154","DOIUrl":null,"url":null,"abstract":"In this study, we numerically investigated the multi-scale flow features of 43 types of geofluids (including 18 real geofluids and 25 parametric fluids) within rock fractures under different roughness and hydrodynamic conditions. Our findings demonstrate that the generalized Forchheimer equation, an extension of Darcy's law for nonlinear flows, effectively captures the nonlinear flow features of these diverse fluids. While changes in fluid properties have minimal impact on Darcy's viscous permeability, they significantly influence Forchheimer inertial permeability and the critical Reynolds number. These dependencies are mechanistically attributed to the regulation of eddy growth rate in fractures by fluid properties. Building on these mechanistic insights, we developed two types of models for predicting inertial permeability and critical Reynolds number across various geofluids within a unified framework. One model extrapolates predictions from the results of classical standard water flow, while another enables direct prediction based on the mean and variance of the fracture aperture field.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb030154","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we numerically investigated the multi-scale flow features of 43 types of geofluids (including 18 real geofluids and 25 parametric fluids) within rock fractures under different roughness and hydrodynamic conditions. Our findings demonstrate that the generalized Forchheimer equation, an extension of Darcy's law for nonlinear flows, effectively captures the nonlinear flow features of these diverse fluids. While changes in fluid properties have minimal impact on Darcy's viscous permeability, they significantly influence Forchheimer inertial permeability and the critical Reynolds number. These dependencies are mechanistically attributed to the regulation of eddy growth rate in fractures by fluid properties. Building on these mechanistic insights, we developed two types of models for predicting inertial permeability and critical Reynolds number across various geofluids within a unified framework. One model extrapolates predictions from the results of classical standard water flow, while another enables direct prediction based on the mean and variance of the fracture aperture field.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.