Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products.

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2025-01-09 eCollection Date: 2025-01-22 DOI:10.1021/acscentsci.4c01657
Frederik Simonsen Bro, Laura Depta, Nienke J Dekker, Hogan P Bryce-Rogers, Maria Lillevang Madsen, Kaia Fiil Præstegaard, Tino Petersson, Thomas Whitmarsh-Everiss, Mariusz Kubus, Luca Laraia
{"title":"Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products.","authors":"Frederik Simonsen Bro, Laura Depta, Nienke J Dekker, Hogan P Bryce-Rogers, Maria Lillevang Madsen, Kaia Fiil Præstegaard, Tino Petersson, Thomas Whitmarsh-Everiss, Mariusz Kubus, Luca Laraia","doi":"10.1021/acscentsci.4c01657","DOIUrl":null,"url":null,"abstract":"<p><p>Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"136-146"},"PeriodicalIF":12.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01657","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Measuring the Elusive Half-Life of Samarium-146. Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity. Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products. Selection of Early Life Codons by Ultraviolet Light. NSF NeXUS: A New Model for Accessing the Frontiers of Ultrafast Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1