{"title":"LiteMamba-Bound: A lightweight Mamba-based model with boundary-aware and normalized active contour loss for skin lesion segmentation","authors":"Quang-Huy Ho, Thi-Nhu-Quynh Nguyen, Thi-Thao Tran, Van-Truong Pham","doi":"10.1016/j.ymeth.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of medical science, skin segmentation has gained significant importance, particularly in dermatology and skin cancer research. This domain demands high precision in distinguishing critical regions (such as lesions or moles) from healthy skin in medical images. With growing technological advancements, deep learning models have emerged as indispensable tools in addressing these challenges. One of the state-of-the-art modules revealed in recent years, the 2D Selective Scan (SS2D), based on state-space models that have already seen great success in natural language processing, has been increasingly adopted and is gradually replacing Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). Leveraging the strength of this module, this paper introduces LiteMamba-Bound, a lightweight model with approximately 957K parameters, designed for skin image segmentation tasks. Notably, the Channel Attention Dual Mamba (CAD-Mamba) block is proposed within both the encoder and decoder alongside the Mix Convolution with Simple Attention bottleneck block to emphasize key features. Additionally, we propose the Reverse Attention Boundary Module to highlight challenging boundary features. Also, the Normalized Active Contour loss function presented in this paper significantly improves the model's performance compared to other loss functions. To validate performance, we conducted tests on two skin image datasets, ISIC2018 and PH2, with results consistently showing superior performance compared to other models. Our code will be made publicly available at: <span><span>https://github.com/kwanghwi242/A-new-segmentation-model</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 10-25"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000118","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of medical science, skin segmentation has gained significant importance, particularly in dermatology and skin cancer research. This domain demands high precision in distinguishing critical regions (such as lesions or moles) from healthy skin in medical images. With growing technological advancements, deep learning models have emerged as indispensable tools in addressing these challenges. One of the state-of-the-art modules revealed in recent years, the 2D Selective Scan (SS2D), based on state-space models that have already seen great success in natural language processing, has been increasingly adopted and is gradually replacing Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). Leveraging the strength of this module, this paper introduces LiteMamba-Bound, a lightweight model with approximately 957K parameters, designed for skin image segmentation tasks. Notably, the Channel Attention Dual Mamba (CAD-Mamba) block is proposed within both the encoder and decoder alongside the Mix Convolution with Simple Attention bottleneck block to emphasize key features. Additionally, we propose the Reverse Attention Boundary Module to highlight challenging boundary features. Also, the Normalized Active Contour loss function presented in this paper significantly improves the model's performance compared to other loss functions. To validate performance, we conducted tests on two skin image datasets, ISIC2018 and PH2, with results consistently showing superior performance compared to other models. Our code will be made publicly available at: https://github.com/kwanghwi242/A-new-segmentation-model.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.