Floating BiOBr/Ti3C2 aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-05-01 Epub Date: 2025-01-23 DOI:10.1016/j.jcis.2025.01.187
Jing Sun, Linxing Wang, Ting Huang, Kun Liu, Tian Fu, Zisong Xu, Wenhao Yang, Zhangfa Tong, Hanbing Zhang
{"title":"Floating BiOBr/Ti<sub>3</sub>C<sub>2</sub> aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.","authors":"Jing Sun, Linxing Wang, Ting Huang, Kun Liu, Tian Fu, Zisong Xu, Wenhao Yang, Zhangfa Tong, Hanbing Zhang","doi":"10.1016/j.jcis.2025.01.187","DOIUrl":null,"url":null,"abstract":"<p><p>The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/Ti<sub>3</sub>C<sub>2</sub>, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O<sub>2</sub> transfer via a triphase interface, thereby promoting the generation of ROS. The oxygen diffusion flux of aerogel spheres' upper surface in triphase system exhibited a 0.151 μmol·(m<sup>2</sup>·S)<sup>-1</sup> increase compared to that of the diphase one based on Finite element simulation (FEM). Furthermore, owing to the regulation of charge spatial distribution by Schottky junction of BiOBr/Ti<sub>3</sub>C<sub>2</sub>, internal electric field (IEF) of CA/CNF@BiOBr/Ti<sub>3</sub>C<sub>2</sub> achieved 1.8-fold improvement compared with CA/CNF@BiOBr, thus enhancing the separation of photogenerated charges. Accordingly, the degradation efficiency and catalytic rate constant of moxifloxacin (MOX) by CA/CNF@BiOBr/Ti<sub>3</sub>C<sub>2</sub> in triphase system have improved by 20.1% and 1.5 times compared to those of diphase system, respectively. Moreover, the potential to mineralize multiple quinolone antibiotics (FQs), high resistance to complex water disturbances and excellent stability were revealed in CA/CNF@BiOBr/Ti<sub>3</sub>C<sub>2</sub>. Besides, the triphase system based on CA/CNF@BiOBr/Ti<sub>3</sub>C<sub>2</sub> confirmed the potential for large-scale water treatment application in 500 mL MOX circular flow, reaching 90% MOX removal within 120 min. This research clarifies the oxygen mass transfer mechanism and pathways to the enhanced ROS production in a triphase system, and provides new insights into designing efficient floatable photocatalyst and adaptive reaction devices for new pollutants remediation.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"813-825"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/Ti3C2, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O2 transfer via a triphase interface, thereby promoting the generation of ROS. The oxygen diffusion flux of aerogel spheres' upper surface in triphase system exhibited a 0.151 μmol·(m2·S)-1 increase compared to that of the diphase one based on Finite element simulation (FEM). Furthermore, owing to the regulation of charge spatial distribution by Schottky junction of BiOBr/Ti3C2, internal electric field (IEF) of CA/CNF@BiOBr/Ti3C2 achieved 1.8-fold improvement compared with CA/CNF@BiOBr, thus enhancing the separation of photogenerated charges. Accordingly, the degradation efficiency and catalytic rate constant of moxifloxacin (MOX) by CA/CNF@BiOBr/Ti3C2 in triphase system have improved by 20.1% and 1.5 times compared to those of diphase system, respectively. Moreover, the potential to mineralize multiple quinolone antibiotics (FQs), high resistance to complex water disturbances and excellent stability were revealed in CA/CNF@BiOBr/Ti3C2. Besides, the triphase system based on CA/CNF@BiOBr/Ti3C2 confirmed the potential for large-scale water treatment application in 500 mL MOX circular flow, reaching 90% MOX removal within 120 min. This research clarifies the oxygen mass transfer mechanism and pathways to the enhanced ROS production in a triphase system, and provides new insights into designing efficient floatable photocatalyst and adaptive reaction devices for new pollutants remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效降解喹诺酮类抗生素的浮动 BiOBr/Ti3C2 气凝胶球:通过三相界面快速转移氧气,并利用内部电场有效分离电荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery. In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. Floating BiOBr/Ti3C2 aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1